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Abstract

This thesis describes the development of strapdown Inertial Navigation System (INS)

algorithms for low cost Inertial Measurement Units (IMU). The term \low cost IMU"

is used to describe an IMU built with standard low grade gyros and accelerometers

which cannot conduct self-alignment. These algorithms motivated the development of

the INS error models and the Global Positioning System (GPS) error models for low

cost aiding in autonomous navigation.

This thesis has three principle contributions. The �rst is the development of strapdown

INS velocity, position and attitude error propagation models for large angle errors in

the computer frame approach. There are two sets of the models. The �rst set uses

psi angles to describe attitude errors. The other uses quaternions. These models di�er

from other INS error models that they do not require small angle assumptions. The

second contribution is the development of low cost INS algorithms using the INS error

models developed in this thesis. There are two algorithms which use the two sets of INS

models. The main contribution of these algorithms is the in-motion alignment approach

with unknown initial conditions. The implementation of the algorithm using the psi

angle model involves the Extended Kalman Filter (EKF). The quaternions algorithm

uses the Distribution Approximation Filter (DAF). GPS measurements are used to aid

INS. It is argued that the quaternions approach gives better accuracy and requires less

computation. The third contribution is the GPS modelling in the frequency domain.

The equations of GPS position errors are derived to be identical second order systems

in the frequency domain. Feedback and feedforward �lters for GPS error de-correlation

using INS information are presented.

The theoretical work is veri�ed by a set of experiments using real data. A standard

GPS is used to verify the GPS modelling. The experimental results using a low cost

IMU and an aiding DGPS have shown that position, velocity and attitude accuracy

can be achieved using the algorithms presented in this thesis.
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Chapter 1

Introduction

1.1 The Objectives of this Thesis

This thesis develops algorithms for low cost inertial navigation systems (INS) based on

INS error propagation models. The algorithms are intended for use by a low cost iner-

tial measurement unit (IMU) to provide accurate navigation information, as position,

velocity and attitude, of the vehicle which carries the INS. The term \low cost IMU"

is used to describe an IMU built with standard low grade gyros and accelerometers.

To achieve the goal of algorithm development, three issues are addressed in this

thesis:

� Development of INS error models appropriate for low cost IMUs which determine

the accuracy and behaviour of the INS.

� Designing and tuning of the �lter algorithms for such INS .

� Identifying sensor models which will be used in the �lter algorithms.

1.2 Common Coordinate Systems Used in Navigation

Fundamental to the process of inertial navigation is the precise de�nition of a number

of Cartesian coordinate reference systems or frames [1]. Each frame is an orthogonal,

1



1.2 Common Coordinate Systems Used in Navigation 2

right handed axis set.

The following INS frames are de�ned and used in this thesis.

� Inertial frame ( i-frame) is the frame in inertial space. Its origin is at the centre

of the Earth and axes are non-rotating with respect to the �xed stars.

� Earth frame (e-frame) is an earth-�xed frame whose origin is at the Earth centre,

x axis points to the north pole, y axis points to the Greenwich meridian in the

equatorial plane and the z axis completes the system to a right-hand coordinate

system.

� Body frame ( b-frame) is a frame �xed to the vehicle. The accelerations and

angular rates generated by the strapdown accelerometers and gyros are measured

in b�frame.

� Computer frame ( c-frame) is the local level frame at the INS computed position.

� Platform frame ( p-frame) is the frame in which the transformed accelerations

from the accelerometers and angular rates from the gyros are solved.

� True frame ( t-frame) is the true local level frame at the true position.

� Navigation frame ( n-frame) is a user de�ned frame for navigation output. Any

frame de�ned above can be chosen as the navigation frame.

The schema of these frames are shown in the following chapters.

The Global Positioning System (GPS) is another navigation source used in this

thesis. The World Geodetic System WGS-84 is a coordinate system for GPS. WGS-84

is an Earth-centred Earth-�xed reference frame de�ned as follows [2]:

Origin: Earth's centre of mass.

z-axis: Parallel to the direction of the conventional international origin for polar

motion, as de�ned by the Bureau International De L'HEURE (BIH) on the basis of the

latitudes adopted for the BIH stations.
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x-axis: Intersection of the WGS-84 reference meridian plane and the plane of the

mean astronomic equator, the reference meridian being parallel to the zero meridian

de�ned by the Bureau International De L'HEURE on the basis of the longitudes adopted

for the BIH stations.

y-axis: Completes a right-handed Earth-centred, Earth-�xed orthogonal coordinate

system, measured in the plan of the mean astronomic equator 90 degrees east of the

x-axis.

1.3 INS Error Models

An IMU usually contains a set of three orthogonal-installed accelerometers and three

orthogonal-installed gyros. When the accelerometers and the gyros are directly installed

in the vehicle body, the INS is called a strapdown INS (SINS). An inertial navigation

system is a real time algorithm to calculate the position, velocity and attitude of the

vehicle which carries the INS by integrating the acceleration and rotation rate signals

from an IMU.

The velocity and the position are calculated by double integration of the sum of

the gravitational acceleration and the non-gravitational acceleration from the three

accelerometers. For a strapdown INS, these integrations are performed in the coordinate

system in which the three accelerometers are installed. By integrating the rotation

rate signals from three gyros, the angular orientation of the three accelerometers is

determined. The calculated acceleration, velocity and position are transformed into

the desired navigation coordinate system by this orientation information.

Figure 1.1 shows the INS process. There are two main phases for INS operation:

the alignment phase and the navigation phase. The integration sequence starts from

the initial velocity, position and attitude. The process for determining these INS initial

conditions is called alignment. Any INS has to undergo this initial alignment phase

before it starts to navigate.

Any errors in either the alignment phase or the navigation phase will be integrated
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Figure 1.1: Inertial Navigation System

and will propagate over time. These errors determine the performance and the navi-

gation accuracy of the INS. Error analysis is based on error models. Error models also

serve for real-time failure detection and for the implementation of a data fusion �lter

in the INS algorithms [3].

Most of the literature on INS is concerned with INS error propagation analysis and

models. There are two approaches to the derivation of INS error models [4]. One is

known as the phi-angle approach or the true frame approach. The other is known as

the psi-angle approach or the computer approach. The phi-angle approach perturbs

the INS equations in the local-level north-pointing Cartesian coordinate system that

corresponds to the true geographic location of the INS. The psi-angle approach per-

turbs the INS equations in the computer frame which is the local-level north-pointing

coordinate system that corresponds to the geographic location computed by the INS.

It has been shown that the models from these two approaches are equivalent and yield

identical results [5, 6, 7]. Modelling procedures and the perturbation rules have been
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uni�ed in reference [3].

Most of the literature for INS modelling makes the assumption that all perturbation

attitude errors are small angles. The coordinate transformation in the modelling is

therefore presented by some approximation matrices.

However, in many cases, this small angle assumption will not hold. IMUs with low

accuracy cannot measure the earth rate which is the key vector for INS alignment. The

initial heading will be unknown. The corresponding attitude error in both the phi-angle

model and the psi-angle model could be up to �180 degrees making the small angle

approximation not valid.

In recent literature, attempts to model INS propagation errors with an unknown

heading were presented. Stepanov et al. presented a model considering a large heading

error and small tilt errors using the true frame [8]. Scherzinger developed a modi�ed psi

angle model with arbitrary heading and small tilt errors using the psi-angle approach

[9, 10]. Four states are used to describe three psi angles. The psi angle  z which

represents the correspondent heading error is split into two states sin( z) and cos( z).

Other INS models related to land vehicles and robotics applications are presented

in references [11, 12].

So far, an accurate psi angle model for three large error angles has not been discussed

in the literature. Development of such a psi angle model for all large attitude errors

using three single psi angles is one of the main contributions of this thesis.

An INS may compute the attitude using Euler angles, the direction cosine matrix

or the quaternions. The quaternions method is advantageous since it requires less

computation, gives better accuracy and avoids singularity [13]. Some INS error models

using quaternions have been developed using the in�nitesimal angle assumption [13,

14, 15].

Error models using quaternions for three large errors have not been discussed in

the literature. The development of a quaternion based INS error propagation model for

large errors is another contribution of this thesis.
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1.4 Integrated INS Algorithms Using Error Models

The purpose of INS error modelling is to develop a model for INS algorithms. Based

on the two sets of models developed in this thesis, two INS algorithms are developed for

low cost IMU.

The term \low cost INS" in this thesis is used to describe an INS built with low

cost IMU components whose sensitivity is not enough to measure the earth rate. The

earth rate is a key input to INS initial alignment using gyrocompassing. In a case when

the earth rate cannot be measured by an INS, the alignment will not be performed

properly. To obtain the initial attitude, external sensors have to be used [16]. An

in-motion alignment algorithm makes use of other navigation information to determine

the attitude of the IMU. The Global Positioning System and other navigation sensors

are commonly used as aiding information for INS alignment purposes. The Kalman

�lter is the most commonly used algorithm for fusing INS and other navigation data in

both INS alignment and navigation phases.

The Kalman �lter is a linear statistical algorithm used to recursively estimate the

states of interest [17]. In INS algorithms, the states of interest usually consist of the

errors of the vehicle velocity, position, attitude, IMU sensor biases, errors from other

navigation systems and other relevant vehicle parameters. To aid in the estimation of

the states, the Kalman �lter requires two models: the process model and the observation

model. The process model describes the propagation of the states. The observation

model describes the information supplied by a sensor as a function of the states, together

with a model of measurement noise. INS error propagation models are the main process

models used in most of the literature.

Many common processes cannot be represented adequately using linear models.

The psi angle model and the quaternions model developed in this thesis are based

on nonlinear models. The Extended Kalman Filter (EKF) is the most widely used

approach for a nonlinear �lter algorithm [18]. The EKF predicts the states of the system

under the assumption that its process model and observation model are locally linear.
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The �lter models are expanded using Jacobians. However, there are some problems

with the EKF [19]. The implementation di�culty of Jacobians is one shortcoming of

the EKF. The problems of the EKF motivated the development of a new �lter algorithm

called the Distribution Approximation Filter (DAF) [19, 20, 21, 22, 23].

In this thesis, the EKF and DAF are used for the two INS algorithms respectively.

The algorithm with the psi angle model as the process model will use the EKF. The

quaternions model algorithm will use the DAF.

INS provides high frequency information and is considered a dead reckoning sensor

with an error that grows unbounded with time. External navigation sensors commonly

aid INS. GPS can provide low frequency navigation information without drift over time.

The integration of INS and GPS has been widely used for navigation. In this thesis,

GPS is used for observation to aid the INS.

There are important error sources in GPS measurement. GPS errors should be

modelled and estimated in the �lter. This thesis presents new GPS shaping �lters

which describe the GPS frequency characters.

1.5 Main Contributions of this Thesis

The main contributions of this thesis are:

� The development of psi angle models in computer frame for large attitude errors.

� The development of quaternion models for large attitude errors.

� GPS modelling in the frequency domain.

� The development of an INS algorithm for low cost IMU using the psi angle ap-

proach.

� The development of an INS algorithm for low cost IMU using the quaternion

approach.
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These contributions are veri�ed by a set of experimental implementations using a

low cost IMU and a GPS.

1.6 The Structure of this Thesis

This thesis does not have one central literature review. Rather, the literature relevant

to a particular topic will be cited at the beginning of each chapter.

Chapter 2 addresses the �rst two contributions of this thesis: development of

generic INS error propagation models for large attitude errors in the psi angle approach

and the quaternion approach.

The INS error models in the literature are reviewed at the beginning of this chap-

ter. The psi angle approach, the phi angle approach and the quaternion model in the

literature are also discussed. None of the models assumes three large attitude errors.

The INS error propagation models for large errors in the psi angle approach are

developed in this chapter. There are three models: the velocity error model, the position

error model and the attitude model. The models in three large errors, one large heading

error and two tilts errors, and three small errors are also examined.

Another set of INS models in quaternions for large errors is derived. The computer

approach is also used in these models. The quaternions and the frames used in this ap-

proach are discussed. The quaternion error propagation models for large misalignment

of the platform frame and the computer frame are extended.

Chapter 3 details the modelling of the GPS errors in the frequency domain. GPS

is the aiding navigation source for the INS algorithm. The chapter begins by reviewing

the previous work on GPS modelling in the frequency domain.

A GPS position error model is derived. It is proved that the transfer function of the

GPS position error in any frame has the identical poles and zero as the pseudo-range

error. The modelling method using power spectral density of the noise is detailed.

The de-correlation of the GPS coloured noise is also described. A shaping �lter is

introduced to take into account the coloured noise. An example is also presented using
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feedforward and feedback �lters.

Chapter 4 addresses the design of an INS algorithm for low cost IMUs with un-

known initial conditions using the psi angle approach in the computer frame.

The analytic coarse alignment method and gyrocompassing, which are the major

methods for self-alignment, are discussed. A new in-motion alignment is proposed.

In this chapter, a new algorithm is developed in the computer frame using the psi

angle approach with an unknown initial attitude using a low cost INS aided by a GPS.

The coarse alignment on ground for raw data process and IMU turn-on biases

estimation is discussed. A method to determine the coarse initial cosine direction

matrix is also presented.

Chapter 5 develops an INS algorithm for low cost IMUs in the computer frame

using quaternions. Quaternions errors are exploited using the misalignment of the

computer frame and the platform frame. The entire �lter process model structure and

the process noise are discussed. The process noise vectors are reconstructed by a linear

combination of the white noise on the accelerometers and gyros in the body frame.

The Distribution Approximation Filter (DAF) is used to implement this algorithm.

The principle and the bene�t of the DAF are brie
y described.

Chapter 6 presents the experimental results for the INS algorithms using the psi

angle approach and the quaternion approach and GPS modelling.

Results of GPS modelling in the frequency domain are discussed. Modelling results

are shown. Power spectral density (PSD) of raw GPS position data and the calculated

PSDs by using the model parameters are compared by using a set of �gures from the

experiments using a GPS receiver. The GPS model is validated with a set of plots in

the frequency domain and the time domain using the feed back de-correlation �lter.

The experimental results are presented to verify the psi angle models, the quaternion

models and the INS algorithms for low cost IMU. The experiment uses a low cost IMU

aided by a DGPS. The results show how the heading errors are corrected from �180�

to �0.1�.
Finally, Chapter 7 summarizes the main contributions of this study and provides
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suggestions for further research.



Chapter 2

INS Error Propagation Models

2.1 Introduction

This chapter develops generic INS error propagation models for large attitude errors

using the psi angle approach and the quaternion approach.

Two approaches have been adopted in the literature: the psi angle approach and the

phi angle approach. The psi angle model and the phi error model are reviewed brie
y

in Sections 2.2.4 and 2.2.5. In recent years, some models have been developed for large

heading errors in di�erent frames. So far, there are no generic error propagation models

for large attitude errors. All quaternion error models in the literature use the small

angle assumption.

The INS error propagation models for large errors in the psi angle approach are

developed in Section 2.3. There are three models: the velocity error model, the position

error model and the attitude model. The velocity error model is developed in Section

2.3.1. The position error model has no di�erence between small angles and large angles.

Section 2.3.3 presents the psi angle model with all large error angles. The models for

three large errors, one large heading error and two tilt errors, and three small errors

are also discussed.

Another type of INS model using quaternions for large errors is developed in Section

2.4. The computer approach is also used in these models. The quaternions and the

11
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frames used in this approach are discussed in Section 2.4.1. The velocity error model

in the quaternion approach is developed in Section 2.4.2. The quaternion error propa-

gation models for large misalignment of the p�frame and the c�frame are extended in

Section 2.4.4.

2.2 INS Error Models Review

2.2.1 INS Error Models Review

In the design and operation of an INS, navigation errors determine INS performance

and accuracy.

Error models are developed by perturbing the nominal di�erential equations whose

solution yields the INS output of velocity, position and orientation. The nominal equa-

tions are based on Newton's law. The basic equations can be expressed in di�erent

coordinate systems or frames. In 1992, Goshen-Meskin and Bar-Itzhack presented a

uni�ed approach and systematic methodology for developing INS error models [3]. It

was demonstrated that the error models developed in the di�erent forms are equivalent.

A developer's tool was presented in their work which indicated the model developing

steps to follow. Their INS error models had methodologies that produced equivalent

results [3].

In 1988, Bar-Itzhack and Berman approached the analysis of INS from a control

theory point of view [4]. The di�erential equations that describe INS error behaviour

were divided into equations describing the propagation of the translatory errors and

equations describing the propagation of the attitude errors. Both the translatory and

attitude error equations can be expressed in two di�erent ways that yield two versions

of the translatory error equations and two versions of the attitude error equations. The

two versions of the translatory equations depend on whether the equations are posi-

tion error components or velocity error components. The two versions of the attitude

equations depend on whether the equation variables are components of the platform

to computer frame attitude di�erence, or components of the platform to true frame
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attitude di�erence. All of these versions are equivalent [6, 7].

These two approaches for INS error analysis are known as the phi angle approach

and the psi angle approach. The phi angle approach is also called the perturbation

approach or true frame approach. In the phi angle approach, the navigation equations

and error models are solved in the true frame (t�frame). The psi angle approach is

also called the computer frame approach and solves the navigation equations in the

computer frame (c�frame).
Benson [5] derived error equations for INS using the perturbation approach and

the psi angle approach. This work shows the underlying assumptions and allows direct

comparison of the two methods. The two approaches are equivalent and yield identical

results.

The psi-angle error equation in the strapdown INS developed by Bar-Itzhack [24]

proved that apart from a sign change, the psi-angle di�erential equation in the error

analysis of the strapdown INS is identical to the one used in a conventional gimbled

INS.

There are some other INS error models but all are based on the assumption that

the angle errors are small [25, 26, 27].

2.2.2 INS Error Models for Azimuth Uncertainty

Both the psi angle and the phi angle approaches assume that the INS attitude errors

are small.

Analytic coarse alignment and gyrocompassing based on the measurement of the

gravity vector and the earth rate vector are the main principles for INS alignment. High

quality IMUs with high resolution can measure the earth rate. This aids the INS initial

alignment to reduce the initial attitude error to satisfy the small angle assumption. This

method cannot be used with low cost IMUs because they are not sensitive enough to

determine the earth rate. External heading sensors and tilt sensors have to be employed

to obtain the INS initial attitude.

A general error model for large attitude errors in all dimensions is required to avoid
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the use of external heading and tilt sensors.

So far, only a few works have attempted to model large angle errors and to consider,

for example, large heading uncertainty of IMU orientation.

Pham introduced a Kalman �lter mechanization for the INS airstart system in 1992

[28]. This approach used two nonlinear states to describe one heading angle. The

attitude errors were not modelled. Dmitriyev, Stepanov and Shepel [8] presented an

INS error model considering large heading uncertainty and small tilt misalignment

errors using a true frame perturbation approach. The heading uncertainty is solved

with a piecewise-Gaussian approximation of a posterior density function. The error

model is built in the true frame with the assumption of two small tilt misalignments

and one large misalignment. The nonlinear characteristic of the problem is considered

in a short period. As a result, the heading misalignment rate is assumed to be zero. In

the misalignment error models, the rates of misalignment angles are coupled with the

velocity errors and the velocity errors are coupled with misalignment angles.

An approximate extended psi-angle model with large heading misalignment is pre-

sented in [9, 10] by Scherzinger using four states to describe the three psi-angles. The

model extension is very involved.

In Scherzinger's model, an extended misalignment vector 	e is de�ned as:

	e = [ x;  y; sin z; cos z � 1]T (2.1)

with the psi angle [ x;  y;  z]
T being the misalignment of the computer frame and the

platform frame.

The psi angle model for large azimuth misalignment is derived as:

_	e = �

2
66664
(!cic)e+

���
01�4

3
77775�	e +

2
66664

02�1

!x y � !y x
0

3
77775�

2
66664

"p

���
0

3
77775 (2.2)

where (!cic)e+ is the extended 1 � 4 vector of the rate between the computer frame.

"p is gyro error in p-frame and the inertial frame. [!x; !y; !z]
T is the vector of the
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misalignment angular rate. For small azimuth misalignment, the error model turns to:

_	e = �

2
66664
(!cic)e+

���
01�4

3
77775�	e �

2
66664

"p

���
0

3
77775 (2.3)

which has a similar form to the psi angle model developed in the literature by Benson

[5] and Bar-Ithzack [24].

General INS error propagation models for all large angles have not been investigated

in the past. Models in the quaternion form have not been thoroughly investigated either.

In this chapter, general error models for three large attitude errors will be developed.

Two approaches are used in the error models: the psi angle approach and the quaternion

approach.

2.2.3 Quaternion Error Models Review

INS attitude calculation is based on the methods of Euler angles, direction cosine matrix

and quaternions. The psi angle model is applicable to the Euler angles and direction

cosine matrix methods. The quaternion method is more e�ective as it provides more

accuracy, requires less computation and avoids singularity in computation.

Error models in quaternions are consequently important when quaternion methods

are used.

Friedland [14] presented a number of models for a strapdown INS based on quater-

nions including dynamics and error propagation models. Small attitude errors as-

sumption is implied. Vathsal [15] derived error equations for quaternion propagation in

spacecraft navigation also with the small angle assumption. Roumeliotis and Sukhatme

[29] modelled quaternions in attitude as a constant plus a white noise using the in�nites-

imal angle assumption. Another quaternion error di�erential equation was developed

by Crassidis and Markley [30] where the Riccati trajectories were introduced into error

quaternion trajectories. A numerical solution form of the quaternion error was given

by Lovren and Pieper [25]. The scale, skew and drift errors of INS were presented in

the numerical quaternion form.
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In 1998, Lee, Roh and Park [13] proposed equivalent tilt error models which were

applicable to the analysis of the terrestrial strapdown inertial navigation system based

on quaternions. In this work the computer approach was used. To derive the veloc-

ity and the attitude error models, small angle assumptions were considered to satisfy

equivalent tilt angle de�nition.

In situations where initial attitudes are unknown or large attitude perturbation

occurs, the previous INS error models will not satisfy the small angle assumption. So

far, to the best of the author's knowledge there are no large error models employing

quaternions.

In this chapter, an INS velocity error model, a position error model and an attitude

error model are developed in the quaternion method in the computer frame. The

velocity error propagation is presented using quaternions. Attitude errors are presented

by the misalignment of the computer frame and the platform frame. Quaternion errors

are solved in the computer frame. No small angle assumption is made in the model

development. The models are suitable for both three small and large attitude errors

cases.

2.2.4 Psi Angle Approach Review

In the psi angle approach introduced by Benson [5], the navigation equations are solved

in the computer frame (c�frame). Error propagation models are derived from pertur-

bation of the c�frame solution. See Figure 2.1.
The computer frame (c�frame) is de�ned as the local level frame located at the

INS computed position. The platform frame (p�frame) is the frame in which the

transformed accelerations and angular rates from the accelerometers and gyros are

resolved. Psi-angle ( ) is the angle between the c�frame and the p�frame.  =

[ x;  y;  z]
T
:

The velocity and attitude error models of the psi angle approach for small angles

are brie
y introduced here.
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Figure 2.1: Computer frame, platform frame and three psi angles.

Velocity Error Model

The true INS velocity equation in the c�frame is given by:

_V c
t = f

c
t + g

c
t � (2
cie +
cec)V

c
t (2.4)

where V c
t = [V c

tx; V
c
ty ; V

c
tz]
T is the true velocity in the c-frame, f ct is the true speci�c force

in the c-frame, gct is the true gravity in the c-frame, 
cie is the earth rate in the c-frame

and 
cec is the rotation rate from the c-frame to the earth frame. In the followingb
represents observation and � represents error.


cie and 
cec are the skew symmetric matrices of !cie and !
c
ec. In the east-north-up

frame with the local latitude ' :

!
c
ie =

2
66664
0

!ie cos(')

!ie sin(')

3
77775 (2.5)
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2
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c
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3
77775 (2.6)

where V c = [V c
x ; V

c
y ; V

c
z ]
T is the INS velocity in the computer frame. R = [Rx; Ry; Rz]

T

is the vector from the earth centre to the vehicle position.

The INS solves the following velocity V̂ c:

_̂
V

c

= f
p
t +rp + ĝ

c � (2
cie +
cec)V̂
c (2.7)

where f
p
t is the true speci�c force in the p-frame and rp is the speci�c force error due

to accelerometers' errors.

Assuming the psi angles are small, the velocity errors are solved in the c-frame by

subtracting (2.7) from (2.4) :

� _V c = �	� f ct +rp +�gc � (2
cie +
cec)�V
c (2.8)

	 is the skew symmetric matrix of  angles given by:

	 =

2
66664

0 � z  y

 z 0 � x
� y  x 0

3
77775 (2.9)

The gravity vector error is given by:

�gc = [�!2s�Rcx;�!2s�Rcy;�!2s�Rcy] (2.10)

!s is the Schuler frequency de�ned as !s =
p
g=re, being g the gravity constant and re

the earth radius.

Position Error Model

The position error model in the c-frame is derived from the velocity error model and is

given by Benson [5]:

� _Rc = �
cec�Rc +�V c (2.11)
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Figure 2.2: True frame and platform frame.

Attitude Error Model - Psi Angle Model

The psi angle model was introduced by Benson [5] and Bar-Itzhack [24]:

_ p = �!pip �  p + �
p (2.12)

where _ p is the angular velocity of the p�frame with respect to the c-frame, �p is the

gyro drift rate in the platform frame. !
p
ip is the angular velocity of the p�frame in the

p�frame with respect to the inertial frame (i�frame).

2.2.5 Phi Angle Approach

In the phi angle approach, see Figure 2.2, the frame in which the navigation equations

are solved is the true frame (t-frame).

The true frame is the true local level frame at the true position.

The phi angle � = [�x; �y; �z]
T is the angle between the true frame and the platform

frame.
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Velocity Error Model

Similar to the navigation equations in the computer frame, the true velocity equation

in the true frame is:

_
V t
t = f

t
t + g

t
t � (2
tie +
tet)V

t
t (2.13)

where V t
t = [V t

x ; V
t
y ; V

t
z ]
T is the true velocity in the t-frame, f tt is the true speci�c force

in the t-frame, gtt is the true gravity in the t-frame, 
tie is the earth rate in the t-frame

and 
tec is the rotation rate from the c-frame with respect to the earth frame. Also 
tie

and 
tec are the skew symmetric matrices of !tie and !
t
ec.

Considering the same sources of errors, the INS velocity is:

_̂
V

t

= (f
p
t +rp) + bg � (2
tie +
tet)V̂

t (2.14)

The skew symmetric matrix � of the phi angle is:

� =

2
66664

0 ��z �y

�z 0 ��x
��y �x 0

3
77775 (2.15)

For small phi angles, the direction cosine matrix between the p�frame and the

t�frame holds the relationship:

C
t
p =

2
66664

1 ��z �y

�z 1 ��x
��y �x 1

3
77775 = I3�3 � � (2.16)

where I3�3 is the 3� 3 identity matrix.

The velocity error model for small phi angles is then derived by subtracting (2.13)

from (2.14):

� _V t = ��� fpt +rp +�gt � (2
tie +
tec)�V
t (2.17)
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Figure 2.3: Computer frame, platform frame and true frame.

Attitude Error Model - Phi Angle Model

Let !
p
tp be the angular velocity of the platform frame with respect to the true frame

and let _� be the small angle approximation of !
p
tp and de�ne the di�erence of the psi

angle  and the phi angle � as �� = [��x; ��y; ��z ]
T
: See Figure 2.3.

�� = ��  (2.18)

Identify �! as:

�! = �� + !
t
it � �� (2.19)
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The phi angle equation is given by [5, 3, 9]:

!
p
tp =

_� = �!pip � �+ �! + "
p (2.20)

where "p is the gyro drift in the p�frame.
Compared with the psi angle model (2.12), the phi angle model (2.20) contains the

item �! = �� + !
t
it � ��:

Considerable comparison of the psi angle model and the phi angle model has been

conducted in the literature [6, 7, 3, 5]. The equivalence of these two models has been

proven by Benson and other authors in [6, 7, 3, 5].

2.2.6 Summary

The INS error models have been categorized into two identical approaches: the psi

angle approach and the phi angle approach. Most of the models make the small angle

assumption. Recently, there has been some work on error models assuming small tilts

and large heading errors. To the best of the author's knowledge, INS error propagation

models with three large attitude errors have not been presented before. The goal of

this chapter is to develop an INS velocity error propagation model, a position error

propagation model and a psi angle error model in the computer frame for all large

attitude errors. The error models in quaternion form will also be developed in this

chapter. The applications of these models will be discussed in the following chapters.

2.3 Development of Psi Angle Model for Large Errors

The INS velocity and position error models and the psi angle model for large angle

errors in the computer approach will be developed in this section using the computer

frame (c-frame) and the platform frame (p-frame).
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2.3.1 Velocity Error Propagation Model

The true velocity equation in the c-frame is given by:

_V c
t = f

c
t + g

c
t � (2
cie +
cec)V

c
t (2.21)

The INS computer solves the following velocity V̂ c:

_̂
V

c

= f
p
t +rp + bgc � (2
cie +
cec)V̂

c (2.22)

where f
p
t is the true speci�c force in the p-frame and rp is the speci�c force error due

to the errors of the accelerometers.

Subtracting (2.22) by (2.21), the velocity error �V c = V̂
c�V ct solved in the c-frame

is given by

� _V c = f
p
t � f ct +rp +�gc � (2
cie +
cec)�V

c (2.23)

The speci�c forces in the c-frame (f ct ) and the p-frame (f
p
t ) have the following

relationship:

f
c
t = C

c
p � fpt (2.24)

f
p
t = C

p
c � f ct (2.25)

where Ccp is the direction cosine matrix (DCM) between the p-frame and the c-frame

and C
p
c = (Ccp)

�1. Therefore the velocity error model is:

� _V c = (Cpc � I3�3)f ct +rp +�gc � (2
cie +
cec)�V
c (2.26)

= (I3�3 � Ccp)fpt +rp +�gc � (2
cie +
cec)�V
c (2.27)

Let

sx = sin( x); cx = cos( x) (2.28)

sy = sin( y); cy = cos( y)

sz = sin( z); cz = cos( z)
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For large  angle the matrix Ccp is given by:

C
c
p =

2
66664
cycz � sysxsz �cxsz sycz + cysxsz

cysz + sysxcz cxcz sysz � cysxcz
�sycx sx cycx

3
77775 (2.29)

The speci�c force is transferred to the p�frame using (2.27) instead of (2.26).

Equations (2.27) and (2.29) present the general velocity error propagation model

for large attitude errors.

In the case when  x,  y and  z are all small, C
c
p can be simpli�ed.

sx = sin( x) =  x; cx = cos( x) = 1 (2.30)

sy = sin( y) =  y; cy = cos( y) = 1

sz = sin( z) =  z; cz = cos( z) = 1

and

sin( x) sin( y) = sin( y) sin( z) = sin( z) sin( x) = 0 (2.31)

Thus:

C
c
p = I3�3 +	 (2.32)

C
p
c = I3�3 �	 (2.33)

where the skew symmetric matrix 	 is given by (2.9).

Under the three small angles assumption, the velocity error Equation (2.27) becomes

� _V c = (I3�3 � Ccp)fpt +rp +�gc � (2
cie +
cec)�V
c

= 	� fpt +rp +�gc � (2
cie +
cec)�V
c (2.34)

= �	� f ct +rp +�gc � (2
cie +
cec)�V
c (2.35)

Equations (2.34) or (2.35) and (2.32) or (2.33) are identical to the velocity error

model usually presented in the literature.
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It is important to study the case of large uncertainties in heading and low uncertain-

ties in tilt angles, that is large  z and small  x and  y angles. With this assumption,

C
c
p in (2.27) can be approximated by [31]:

C
c
p =

2
66664

cz �sz  ycz +  xsz

sz �cz  ysz �  xcz
� y  x 1

3
77775 (2.36)

Then the matrix I3�3 � Ccp in the velocity error model is given by:

I3�3 � Ccp =

2
66664
1� cos z sin z � x sin z �  y cos z
� sin( z) 1� cos( z) + x cos( z)�  y sin( z)
 y � x 0

3
77775 (2.37)

The velocity error model with large heading error and small tilt errors is:

� _V c =

2
66664
1� cos( z) sin( z) � x sin( z)�  y cos( z)
� sin( z) 1� cos( z) + x cos( z)�  y sin( z)

 y � x 0

3
77775 fpt

+rc +�gc � (2
cie +
cec)�V
c (2.38)

2.3.2 Position Error Propagation Model

The position error model is the same as for the small angle case:

� _Rc = �
cec�Rc +�V c (2.39)

2.3.3 Psi Angle Error Model

A new general psi-angle model that can be used with large angle errors is derived in

this section.

The true transformation matrix Ccb , which is the direction cosine matrix from the

b-frame to the c-frame, is obtained from [27]:

_Cc
b
= C

c
b


b
ib � 
cicC

c
b (2.40)
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The INS solves C
p

b
, which is the direction cosine matrix from the b-frame to the

p-frame, using measured gyro rates 
̂bib provided by the IMU:

_
C
p

b
= C

p

b

̂bib � 
cicC

p

b
(2.41)

The rates 
̂bib contain gyro drift errors 2b:


̂bib = 
bib+ 2b (2.42)

2b is the skew symmetric matrix of the gyro drift vector [�bx; �
b
y; �

b
z]
T in the body frame:

2b=

2
66664

0 ��bz �
b
y

�
b
z 0 ��bx
��by �

b
x 0

3
77775 (2.43)

Let

�C = C
p

b � Ccb (2.44)

Then

�C = C
p
b �Ccb (2.45)

= C
p

b �CcpCpb
= (I3�3 � Ccp)Cpb (2.46)

_�C can be derived from (2.46) and (2.41). Di�erentiating equation (2.46), we have:

_�C = (I3�3 � Ccp) _
C
p
b � _CcpC

p
b (2.47)

= (I3�3 � Ccp)(Cpb 
̂bib � 
cicC
p

b
)� _CcpC

p

b

= C
p
b 
̂

b
ib � 
cicC

p
b � CcpCpb 
̂bib + C

c
p


c
icC

p
b � _CcpC

p
b

_�C can also be obtained directly from �C = C
p

b
� Ccb . Di�erentiating Cpb and Ccb

we get:

_�C = _
C
p
b � _Ccb (2.48)

= C
p
b 
̂

b
ib � 
cicC

p
b � Ccb
bib +
cicC

c
b

= C
p

b

̂bib � 
cicC

p

b
� CcpCpb
bib +
cicC

c
pC

p

b
(2.49)
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Substituting (2.47) and (2.48):

C
p

b 
̂
b
ib � 
cicC

p

b �CcpCpb 
̂bib + C
c
p


c
icC

p

b � _CcpC
p

b

= C
p

b

̂bib � 
cicC

p

b
� CcpCpb
bib +
cicC

c
pC

p

b

Therefore

_CcpC
p
b +C

c
pC

p
b 
̂

b
ib � Ccp
cicCpb � CcpCpb
bib +
cicC

c
pC

p
b = 0

Consider


̂bib = 
bib+ 2b (2.50)

post multiply both sides by Cbp gives:

_Ccp + C
c
pC

p
b 2b Cpb � Ccp
cic +
cicC

c
p = 0 (2.51)

Let 2p and 2c be the skew symmetric matrices of the gyro drift error vector in the

platform frame and the computer frame respectively:

2p=

2
66664

0 ��pz �
p
y

�
p
z 0 ��px
��py �

p
x 0

3
77775 ; 2c=

2
66664

0 ��cz �
c
y

�
c
z 0 ��cx
��cy �

c
x 0

3
77775 (2.52)

The computed skew symmetric matrix b
p
pb
is the sum of the true 


p

pb
and 2p:

b
ppb = 

p
pb+ 2p (2.53)

And the computed b
bpb is the sum of the true 
bpb and 2b :

b
bpb = 
bpb+ 2b (2.54)

For the computed b
p
pb
and b
bpb we have [27]:

b
ppb = C
p

b
b
bpbCbp (2.55)

Substituting (2.54) and (2.53) into (2.55) :



p

pb
+ 2p= C

p

b
(
bpb+ 2b)Cbp (2.56)
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For the true 

p

pb
and 
bpb we also have:



p
pb = C

p
b


b
pbC

b
p (2.57)

Subtracting (2.57) from (2.56):

2p= C
p
b 2b Cbp (2.58)

Similarly, it can also be proved that:

2p= C
p
c 2c Ccp (2.59)

Pre multiplying Ccp to the above equation, we have:

C
c
p 2p= C

c
p(C

p
c 2c Ccp) =2c Ccp (2.60)

Replacing the term C
c
pC

p

b
2b Cp

b
in (2.51) with (2.59) and (2.60):

C
c
pC

p

b
2b Cp

b
= (2.61)

= C
c
p(C

p
b 2b Cpb )

= C
c
p 2p

=2c Ccp

Consequently (2.51) can be simpli�ed as:

_Ccp+ 2c Ccp � Ccp
cic +
cicC
c
p = 0 (2.62)

Replacing _Ccp = C
c
p


p
cp; and left multiplying C

p
c (2.48) gives:

C
c
p


p
cp+ 2c Ccp � Ccp
cic +
cicC

c
p = 0 (2.63)


pcp + C
p
c 2c Ccp � 
cic +C

p
c


c
icC

c
p = 0 (2.64)

Notice that in (2.64):

C
p
c 2c Ccp =2p (2.65)
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And

C
p
c


c
icC

c
p = 


p
ic (2.66)

Then (2.64) changes to:


pcp+ 2p �
cic +

p
ic = 0 (2.67)



p
cp+ 2p �
cic + 


p
ic are the sum of skew symmetric matrices of !

p
cp + �

p � !cic + !
p
ic.

Equation (2.67) can then be written in the following 3�1 vector form:

!
p
cp + �

p � !cic + !
p
ic = 0 (2.68)

with !
p
ic = C

p
c!

c
ic:

!
p
cp + �

p � !cic + !
p
ic = !

p
cp + �

p � (I3�3 � Cpc )!cic (2.69)

= 0 (2.70)

That is:

!
p
cp = (I3�3 � Cpc )!cic � �p (2.71)

with !
p
cp = _ being the angular rate between the c�frame and the p�frame solved in

the p�frame. Therefore:

_ = (I3�3 � Cpc )!cic � �p (2.72)

Equation (2.72) is the general psi-angle error model that can be used for large or

small angle errors.

When  x;  y and  z are all small,

C
p
c =

2
66664
1  z � y
� z 1  x

 y � x 1

3
77775 (2.73)

Equation (2.71) can be converted to small psi-angle model which is usually presented

in the literature:

_ = 	� !cic � �p (2.74)
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As can be seen, it is a special approximation of the more general form given by

equation (2.72).

Another important case to consider is when  x;  y are small and  z is large, I3�3�
C
p
c is simpli�ed to :

I3�3 � Cpc = I3�3 � (Ccp)
�1 (2.75)

=

2
66664
1� cz �sz  y

sz 1� cz � x
� xsz �  ycz + xcz �  ysz 0

3
77775 (2.76)

In this case, the psi-angle model is given by:

_ = ��p + (2.77)

+

2
66664
1� cz �sz  y

sz 1� cz � x
� xsz �  ycz + xcz �  ysz 0

3
77775!cic

where !cic is given by:

!
c
ic =

2
66664
�V c

y =Ry

V
c
x =Rx + !ie cos(')

V
c
x tg(')=Rx + !ie sin(')

3
77775 (2.78)

In this section, the INS propagation error models in velocity, position and attitude

for large attitude errors have been developed in the computer frame in the psi angle

approach. The models are identical to their corresponding small angle models when

the attitude errors are all small. INS error models using the quaternion approach will

be developed in the next section.
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Figure 2.4: Quaternions and frames.

2.4 Development of INS Error Models Using the Quater-

nion Approach

2.4.1 Quaternions and Coordinate Systems

In this section, INS error models for large attitude errors will be developed using quater-

nions. The computer approach is used here. The coordinate systems used in these

models are the computer frame, the body frame and the platform frame. The body

frame is at the IMU whose axes are the IMU body axes. See Figure 2.4.

INS navigation computes the attitude transformation from the body frame to the

platform frame. Quaternion Q
p
b = [qb0; qb1; qb2; qb3]

T represents this rotation from the

body frame to the platform frame. Direct accelerometer outputs in the body frame are

transformed to the platform frame by left multiplying C(Q
p
b) to the accelerations in the

body frame.

C(Q
p
b) =

2
66664
q
2
b0 + q

2
b1 � q2b2 � q2b3 2(qb1qb2 � qb0qb3) 2(qb1qb3 + qb0qb2)

2(qb1qb2 + qb0qb3) q
2
b0 � q2b1 + q

2
b2 � q2b3 2(qb2qb3 � qb0qb1)

2(qb1qb3 � qb0qb2) 2(qb2qb3 + qb0qb1) q
2
b0 � q2b1 � q2b2 + q

2
b3

3
77775 (2.79)
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Q
p

b
is normalized in each computation at INS sampling time. The four elements

satisfy the constraint [32]:

q
2
b0 + q

2
b1 + q

2
b2 + q

2
b3 = 1 (2.80)

The computer frame is the local level frame at the INS computed position. The

rotation from the platform frame to the computer frame is represented by quaternion

Q
c
p :

Q
c
p = [q0; q1;q2;q3]

T (2.81)

The transformation from the platform frame to the computer frame is given by the

matrix C(Qcp):

C(Qcp) =

2
66664
q
2
0 + q

2
1 � q22 � q23 2(q1q2 � q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q
2
0 � q21 + q

2
2 � q23 2(q2q3 � q0q1)

2(q1q3 � q0q2) 2(q2q3 + q0q1) q
2
0 � q21 � q22 + q

2
3

3
77775 (2.82)

The transformation from the body frame to the computer frame is represented by

the quaternion Qcb: This rotation can be considered as two consecutive rotations from

the body frame to the platform frame, then to the computer frame. Thus:

Q
c
b = Q

c
p 
Qpb (2.83)

where 
 represents the quaternion multiplication. The transformation matrix C(Qcb)

is equal to the product of two transformation matrices.

C(Qcb) = C(Qcp)� C(Qpb) (2.84)

The inconsistencies of the platform frame and the computer frame cause the naviga-

tion quaternion error Q
p

b . Likewise the psi angles which are the misalignment angles be-

tween the platform frame and the computer frame, quaternion Qcp consequently stands

for the inconsistency of the p�frame and the c�frame. The attitude error model is

therefore transferred to the modelling of the quaternion Qcp.
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2.4.2 Velocity Error Propagation Model

In the computer approach, INS velocity is solved in the computer frame. The true

velocity in the computer frame V c
t is given by:

_V c
t = f

c
t + g

c
t � (2
cie +
cec)V

c
t (2.85)

where f ct is the true speci�c force resolved in the computer frame, gct is the gravity

vector resolved in the computer frame, 
cie is the matrix of the earth rate resolved in

the computer frame and 
cec is the matrix representing the rotation from the computer

frame to the earth frame.

Due to the existence of the error sources, the INS computes the following velocity:

_̂
V

c

t = (f
p
t +rp) + bgc � (2
cie +
cec)

bV c
t (2.86)

where f
p
t is the true speci�c force resolved in the platform frame. rp is the bias of the

accelerometers in the platform frame and bgc is the computed gravity vector.

Let �V c = bV c
t � V c

t be the velocity error. The velocity error propagation model is

obtained by subtracting (2.85) from (2.86):

Then:

_�V c =
_̂
V

c

t � _V c
t (2.87)

= [(f
p
t +rp) + bgct � (2
cie +
cec)

bV c
t ]� [f ct + g

c
t � (2
cie +
cec)V

c
t ]

= (f
p
t � f ct )� (2
cie +
cec)�V

c + (bgct � gct ) +rp
= (I3�3 � C(Qcp))fpt � (2
cie +
cec)�V

c +rp +�gc

where �gc = (bgc � g
c
t ) and f

c
t = C(Qcp)f

p
t . The transformation quaternion matrix

C(Qcp) is shown in (2.82). Therefore the velocity error model in quaternion form is

_�V c = (I3�3 � C(Qcp))fpt � (2
cie +
cec)�V
c +rp +�gc (2.88)

This model is applicable to the full range of misalignment angles without small

angle errors assumption.
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2.4.3 Position Error Propagation Model

The position error model is de-coupled from the attitude errors [5]. It has the same

general form as the psi angle form. The psi angle and the quaternions do not appear

directly in the position error equation:

� _Rc = �
cec�Rc +�V c (2.89)

2.4.4 Quaternion Error Propagation Model

Modelling the quaternion error is required to correct and update the navigation quater-

nions in real time at the sampling time.

The inconsistencies of the platform frame and the computer frame cause the naviga-

tion quaternion error Q
p

b . The quaternion error is modelled using Qcp which represents

the misalignment of the platform frame and the computer frame.

The quaternion Qcp satis�es the following di�erential equation:

_Qcp =
1

2

�pcpQ

c
p (2.90)

where the 4�4 matrix 

�p
cp is a function of !

p
cp which is the rotation rate between the

c�frame and the p-frame solved in the p-frame. !
p
cp = [ _ x; _ y; _ z ]

T . And the psi angle

 = [ x;  y;  z ]
T is the angle between the p-frame and the c-frame.


�pcp =

2
66666664

0 � _ x � _ y � _ z

_ x 0 _ z � _ y

_ y � _ z 0 _ x

_ z _ y � _ x 0

3
77777775

(2.91)



2.4 Development of INS Error Models Using the Quaternion Approach 35

Extending (2.90) :

_Qcp =
1

2

�pcpQ

c
p

=
1

2

2
66666664

0 � _ x � _ y � _ z

_ x 0 _ z � _ y

_ y � _ z 0 _ x

_ z _ y � _ x 0

3
77777775

2
66666664

q0

q1

q2

q3

3
77777775

=
1

2

2
66666664

� _ xq1 � _ yq2 � _ zq3

_ xq0 + _ zq2 � _ yq3

_ yq0 � _ zq1 + _ xq3

_ zq0 + _ yq1 � _ xq2

3
77777775

=
1

2

2
66666664

�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

3
77777775

2
66664

_ x

_ y

_ z

3
77775 (2.92)

Let

B =
1

2

2
66666664

�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

3
77777775

(2.93)

Then

_Qcp = B

2
66664

_ x

_ y

_ z

3
77775 = B _ (2.94)

The general psi angle model when all the psi angles are large is given by:

_ = (I � Cpc )!cic � �p (2.95)
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The direction cosine matrix C
p
c which is the transformation matrix from the com-

puter frame to the platform frame can be converted into the quaternions form as C(Q
p
c) :

C(Qpc) =

2
66664
q
2
0 + q

2
1 � q22 � q23 2(q1q2 + q0q3) 2(q1q3 � q0q2))

2(q1q2 � q0q3) q
2
0 � q21 + q

2
2 � q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 � q0q1) q
2
0 � q21 � q22 + q

2
3

3
77775 (2.96)

Therefore, the quaternion model is derived from the psi angle model:

_Qcp = B _ 

= B[(I � C(Qpc))!cic � �p] (2.97)

That is

_Qcp = B(I � C(Qpc))!cic �B�p (2.98)

Equations (2.98), (2.96) and (2.93) give the general quaternion error model without

small angle assumption. The term �
p is the gyro error resolved in the platform frame,

!
c
ic is given by:

!
c
ic =

2
66664
0

!ie cos(')

!ie sin(')

3
77775+

2
66664
�V c

y =Ry

V
c
x =Rx

V
c
x tg(')=Rx

3
77775 (2.99)

with !ie being the earth rate, ' the local latitude. Rx and Ry are the earth ra-

dius elements in the east and north direction in the c-frame. The INS velocity vector

[V c
x ; V

c
y ; V

c
z ]
T is resolved in the computer frame.

In this section, the INS velocity, position and attitude error propagation models for

large attitude errors were developed in the quaternion approach in the computer frame.

2.5 Summary

In this chapter INS error propagation models of velocity, position and attitude for

large attitude errors were developed. The models proposed are based on the psi angle
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method and the quaternion method. The error models using psi angles are for the

navigation using the direction cosine matrix. The quaternion models are for navigation

using quaternions.

There were no small angle assumptions in the development of these two sets of

models. These models become essential when the INS attitude errors are large. In the

later chapters, two INS algorithms using these models for INS in-motion alignment and

calibration are presented.



Chapter 3

GPS Modelling in Frequency

Domain

3.1 Introduction

The calibration and alignment of low cost IMUs requires an external aiding sensor. GPS

is an attractive sensor to aid INS in outdoor environment. To improve the operation

of the full system, it is important to model the main sources of GPS errors. This

chapter presents the determination of the GPS error model in the frequency domain.

The frequency domain is an appropriate method to capture, model and understand the

correlated errors that arise in GPS systems.

The navigation problem is generally split into two components: creating a process

model of the host vehicle and understanding or modelling the sensors to be used. The

process model of a navigation system describes the prediction of states which are typ-

ically the position, velocity, attitude and related parameters a�ecting these variables.

The INS error propagation models developed in this thesis are process models.

Section 3.2 overviews previous work on GPS modelling in the frequency domain.

GPS position error models are derived in Section 3.3. It is also proved in this section

that the transfer function of the GPS position error in any frame has identical poles

and zeros to the pseudo range error model. The modelling method using power spectral

38
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density of noise is described in Section 3.4. Section 3.5 describes the de-correlation of

GPS coloured noise. A shaping �lter is introduced to facilitate the de-correlation task

using an additional sensor. Di�erent types of feedforward and feedback �lter structures

are proposed and the results are presented in the frequency and time domains.

3.2 GPS Frequency Domain Modelling Review

The Global Positioning System provides three-dimensional position and velocity in-

formation to users anywhere in the world. Position determination is based on the

measurement of the transit time of signals from at least four satellites. Accuracy in

the order of 1cm-100m may be achieved depending on the type of GPS con�guration.

The baseline constellation operates in 12-hour orbits. It provides visibility of 6 to 11

satellites at 5 degrees or more above the horizon to users. Signals are transmitted at

two L-band frequencies to permit corrections to be made for ionospheric delays in signal

propagation time. The signals are modulated with two codes: P , which provides for

precision measurement of time, and C=A, which provides for easy lock-on to the desired

signal [33]. Four satellites are normally required for navigation purposes, and the four

o�ering the best geometry can be selected using ephemeris information transmitted by

the satellites. Ranges to the four satellites are determined by scaling the signal transit

time by the speed of light. The transmitted message contains ephemeris parameters

that enable users to calculate the position of each satellite at the time of transmission

of the signal. Operation of the system requires precise synchronization of space vehicle

clocks with \GPS system time". The requirement for users to be equipped with pre-

cision clocks is eliminated by the use of range measurements from four satellites. The

four satellites permit an estimate of the user's clock error. The user position equations

contain four unknowns consisting of position in three dimensions and the error in the

user's imprecise clock.

The measurement of range to the satellites is called \pseudo range". It is de�ned
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as

R = %+ c��t+ n (3.1)

where R is the pseudo range to the satellite, % is the true range, c is the speed of

light, �t is the receiver clock error and n is the correlated noise. Errors contained

in the pseudo range measurement can be divided into the following main categories

[33]: space vehicle clock errors, atmospheric delays, group delay, ephemeris errors,

multipath, receiver noise and resolution, receiver vehicle dynamics. The Di�erential

GPS (DGPS) is a method to correct the e�ects of measurement errors. This method can

help increase receiver accuracy from 100 metres to metres. The di�erential corrections

are calculated at a base station away from the user receiver. In a case where the DGPS

correction is unavailable or in between the correction update time, it is necessary for

the characteristics of the errors to be modelled. Some error modelling methods have

appeared in the literature [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. To the best of the

author's knowledge, there is no GPS error modelling theory using the receiver position

directly in the frequency domain.

3.2.1 GPS Receiver Clock O�set Model

The accuracy of the GPS range measurement relies on the accuracy of the transmitted

time measurement. Each GPS satellite clock is monitored and constantly adjusted to

be synchronous with GPS time. Each GPS receiver uses a low cost quartz oscillator

as its timing reference. The receiver clock o�set is usually modelled by users. Cooper

[45] modeled this o�set using a constant velocity model, because the receiver clock has

a reasonably constant frequency:2
64 c _�t(t)

c ��t(t)

3
75 =

2
64 0 1

0 0

3
75
2
64 c�t(t)

c _�t(t)

3
75+

2
64 1 0

0 1

3
75
2
64 wp(t)

wv(t)

3
75 (3.2)

where c is the light speed, �t(t) is the receiver clock o�set at time t, wp(t) and wv(t)

are process noise.
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3.2.2 GPS Correlated Error Model

Cooper and Durrant-Whyte introduced a modelling technique in the frequency domain

[45]. The correlated error in the pseudo range is modelled using power spectral density

(PSD). It was shown that all the satellites have the same correlated noise (or coloured

noise) statistics. The power spectral density 	i(s) of the correlated noise of each

satellite has the form of a fourth order system:

	i(s) = [
r(s+ �)

s2 + 2�ks+ �2
]2 (3.3)

The transfer function (3.3) can be converted to state space form so that the correlated

noise can be estimated along with the original �lter states. For a single satellite, the

correlated noise in the pseudo range at time t is estimated as:2
64 _x1(t)

_x2(t)

3
75 =

2
64 �2�k 1

��2 0

3
75
2
64 x1(t)

x2(t)

3
75+

2
64 r

r�

3
75wr(t) (3.4)

where x1(t) is the state of interest, x2(t) is the augmented state, wr(t) is a white noise

series, �; k; r and � are the model parameters in (3.3).

Hence, the GPS error propagation model for a single satellite is:

_x(t) = Frx(t) +Grur(t) (3.5)

where

x(t) =

2
66666664

c�t(t)

c _�t(t)

x1(t)

x2(t)

3
77777775
; Fr =

2
66666664

0 1

0 0

0 0

0 0

0 0

0 0

�2�k 1

��2 0

3
77777775

(3.6)

and

Gr =

2
66666664

1 0

0 1

0

0

0 0

0 0

r

r�

3
77777775
; ur(t) =

2
66664
wp(t)

wv(t)

wr(t)

3
77775 (3.7)
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In the example an INS was used as an external sensor, the INS indicated position

was converted into "inertial-pseudo-range" by calculating the expected range to each

satellite using the inertially indicated position and the known satellite locations. The

converted inertial measurement Rins(t) is given by:

Rins(t) =
p
(Xsat(t)�Xins(t))2 + (Ysat(t)� Yins(t))2 + (Zsat(t)� Zins(t))2 (3.8)

where

[Xsat(t); Ysat(t); Zsat(t)] is the satellite position in WGS-84 reference.

[Xins(t); Yins(t); Zins(t)] is the INS indicated vehicle position in WGS-84 reference.

The GPS uses the World Geodetic System WGS-84 as a reference. WGS-84 is an

earth �xed global reference frame, including an earth model. It is de�ned by a set of

parameters which de�ne the shape of an earth ellipsoid, its angular velocity, the earth

mass which is included in the ellipsoid reference and a detailed gravity model of the

earth [46].

There are a number of shortcomings with this modelling method. The �rst is the

need to model the receiver's clock o�set. Further, all the pseudo ranges to all the

satellites in use have to be modelled. Assuming that a maximum of ten satellites may

be tracked at a given time, the total error model can add an additional twenty two states

to the process model used in the fusion �lter. Finally, the measurement of other sensors

has to be converted into an equivalent pseudo range to match the GPS parameters.

These problems motivated the development of an improved modelling method by

using the position measurement directly without modelling the receiver's clock o�set

and the pseudo ranges of all the tracked satellites. The measurement of other sensors

may be used as position information without the need to convert into the equivalent

pseudo range. The number of the model states will be reduced to six. The improved

method is introduced in the following sections.
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Figure 3.1: Satellites, receiver and ranges.

3.3 GPS Position Model

In this chapter the theory that the correlated position errors in any Cartesian coordi-

nates system have an identical model structure is presented . They can be represented

with a second order system driven by a white noise similar to Equation (3.3).

As shown in Figure 3.1, at time t the coordinates of four visible satellites S1, S2, S3

and S4 in WGS-84 frame are (X1;Y1;Z1), (X2;Y2;Z2), (X3;Y3;Z3) and (X4;Y4;Z4). The

three axes of the WGS-84 frame are x, y and z. The position of the receiver in the

WGS-84 frame is (X0;Y0;Z0) and the true ranges from each satellite to the receiver are

�1 , �2 , �3 and �4 with

�i =
p
(Xi �X0)2 + (Yi � Y0)2 + (Zi � Z0)2; i = 1; 2; 3; 4 (3.9)

The measured pseudo ranges Ri (i = 1; 2; 3; 4) are the combinations of the true

range, satellite clock o�set range, receiver clock bias range and the correlated noise ni.

See Figure 3.2.

Ri = �i + c� (Dti �Dt0) + ni; i = 1; 2; 3; 4 (3.10)

where c is the light speed, Dti (i = 1; 2; 3; 4) is the satellite clock bias and Dt0 is the

unknown receiver clock bias.
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Figure 3.2: GPS pseudo range and errors.

Assume the calculated receiver position from the pseudo ranges is ( eX; eY ; eZ).
eX = X0 +Dx;

eY = Y0 +Dy;
eZ = Z0 +Dz (3.11)

where (Dx;Dy;Dz) is the correlated position error.

The pseudo range Ri (i = 1; 2; 3; 4) at the receiver true position (X0;Y0;Z0) with

increment (Dx;Dy;Dz) is:

Ri = �i � Xi �X0

�i
Dx � Yi � Y0

�i
Dy � Zi � Z0

�i
Dz (3.12)

Let

ai = �Xi �X0

�i
; bi = �Yi � Y0

�i
; ci = �Zi � Z0

�i
(3.13)

Subtracting Equation (3.12) from (3.10) and leaving the terms containing position

errors on the left side:

aiDx + biDy + ciDz = c(Dti �Dt0) + ni (3.14)

For the four individual satellites, we have

a1Dx + b1Dy + c1Dz = c(Dt1 �Dt0) + n1 (3.15)

a2Dx + b2Dy + c2Dz = c(Dt2 �Dt0) + n2 (3.16)

a3Dx + b3Dy + c3Dz = c(Dt3 �Dt0) + n3 (3.17)

a4Dx + b4Dy + c4Dz = c(Dt4 �Dt0) + n4 (3.18)
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Subtracting Equation (3.15) from (3.16), (3.17) and (3.18) respectively, the receiver

clock bias Dt0 is removed:

(a1 � a2)Dx + (b1 � b2)Dy + (c1 � c2)Dz = c(Dt1 �Dt2) + (n1 � n2) (3.19)

(a1 � a3)Dx + (b1 � b3)Dy + (c1 � c3)Dz = c(Dt1 �Dt3) + (n1 � n3) (3.20)

(a1 � a4)Dx + (b1 � b4)Dy + (c1 � c4)Dz = c(Dt1 �Dt4) + (n1 � n4) (3.21)

The position error (Dx, Dy, Dz) is consequently obtained from (3.19), (3.20) and

(3.21) with linear combination of satellite clock bias terms and range measurement

correlated noise ni (i = 1; 2; 3; 4).

Let

d =

����������

a1 � a2; b1 � b2; c1 � c2
a1 � a3; b1 � b3; c1 � c3
a1 � a4; b1 � b4; c1 � c4

����������
(3.22)

d12=

�������
b1 � b3; c1 � c3
b1 � b4; c1 � c4

�������
d

(3.23)

d13=

�������
b1 � b2; c1 � c2
b1 � b4; c1 � c4

�������
d

; d14=

�������
b1 � b2; c1 � c2
b1 � b3; c1 � c3

�������
d

(3.24)

where d; d12; d13 and d14 are related to the true ranges and true positions which can be

considered constants at that time.

Consider Dx �rst, then at time t:

Dx(t) = d12c(Dt1(t)�Dt2(t))� d13c(Dt1(t)�Dt3(t)) +

+ d14c(Dt1(t)�Dt4(t)) + d12(n1(t)� n2(t))

� d13(n1(t)� n3(t)) + d14(n1(t)� n4(t)) (3.25)

The satellite clock bias ranges c(Dt1(t)�Dt2(t)), c(Dt1(t)�Dt3(t)) and c(Dt1(t)�
Dt4(t)) are provided by the satellite ephemeris data in GPS message. After removing
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these main clock bias ranges, the remaining error Dx cor(t) is the linear combination

of correlated noise (n1(t)� n2(t)); (n1(t)� n3(t)) and (n1(t)� n4(t)):

Dx cor(t) = d12(n1(t)� n2(t)) � d13(n1(t)� n3(t)) + d14(n1(t)� n4(t)) (3.26)

In frequency domain:

Dx cor(s) = d12(n1(s)� n2(s))� d13(n1(s)� n3(s)) + d14(n1(s)� n4(s)) (3.27)

The correlated noise of the pseudo range of all the satellites has an identical second

order model structure [45]. The model for each satellite has identical poles and zeros.

Therefore the linear combination of any of these correlated noises will not change the

poles and zeros. The position error will have an identical model structure with the

identical poles and zeros as the pseudo range model. The gain, however, is di�erent

and can be obtained using the following method.

Assuming that the correlated noise ni(s) (i = 1; 2; 3; 4) of the pseudo range has the

following transfer function which is a second order system driven by a white noise series

!i (i = 1; 2; 3; 4) with unit strength:

ni(s) =
ri(s+ �)

s2 + 2�ks+ �2
!i (3.28)

where �; k; � are identical to all the satellites. The gain ri is di�erent for each satellite

and is related to the gain of the transfer function.

Then

Dx cor(s) = d12(
r1(s+ �)

s2 + 2�ks+ �2
!1 � r2(s+ �)

s2 + 2�ks+ �2
!2)�

� d13( r1(s+ �)

s2 + 2�ks+ �2
!1 � r3(s+ �)

s2 + 2�ks+ �2
!3) +

+ d14(
r1(s+ �)

s2 + 2�ks+ �2
!1 � r4(s+ �)

s2 + 2�ks+ �2
!4)

=
(s+ �)

s2 + 2�ks+ �2
[(r1!1 � r2!2)d12 �

� (r1!1 � r3!3)d13 + (r1!1 � r4!4)d14]

=
(s+ �)

s2 + 2�ks+ �2
[!1r1(d12 � d13 + d14)�

� !2r2d12 + !3r3d13 � !4r4d14] (3.29)
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We know that a linear combination of white noise is also white noise. Hence in

(3.29) [!1r1(d12 � d13 + d14)� !2r2d12 + !3r3d13 � !4r4d14] is still a white noise series
with strength Gainx :

Gainx = Ef[!1r1(d12 � d13 + d14)� !2r2d12 +

+ !3r3d13 � !4r4d14]T � [!1r1(d12 � d13 + d14)�

+ !2r2d12 + !3r3d13 � !4r4d14]g

= r
2
1 (d12 � d13 + d14)

2 + r
2
2d

2
12 + r

2
3d

2
13 + r

2
4d

2
14

Therefore Dx cor(s) has the identical second order model structure

Dx cor(s) =
s+ �

s2 + 2�ks+ �2
!cor (3.30)

driven by a white noise series !cor with strength Gainx:

The position errors in y and z also have a similar model with the same poles and

zeros and di�erent gains.

The latitude and the longitude of the receiver can be linearly transferred from the

receiver's coordinates in axes x; y and z of the WGS-84 frame. Their correlated error

models also have identical structures. The position in any other Cartesian coordinate

system can be transferred to the WGS-84 frame by multiplying a direction cosine ma-

trix. Hence, it can be concluded that in any other Cartesian coordinate system, the

position correlated errors have identical error models.

Therefore, the correlated error of positions can be modelled independently without

modelling the correlated errors of the pseudo ranges of an individual satellite and the

receiver clock error.

In this thesis, PSD techniques are used to model the error in x, y and z position

information provided by GPS.
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3.4 GPS Position Error Modelling Using PSD

3.4.1 Power Spectral Density and Autocorrelation of Signals

Correlated signals can be examined in either the time domain or the frequency domain.

Frequency characteristics are shown in the power spectral density of the signals. Time

information is contained in the autocorrelation.

For an ergodic signal x(t) the expected value of x(t)x(t+ �) is given by [47]:

Efx(t)x(t+ �)g = �xx(�) = lim
T!1

1

2T

Z T

�T

x(t)x(t+ �)dt (3.31)

where �xx(�) is called the autocorrelation function . � is de�end as the delay variable.

The expected value of x(t) y(t+ �) is given by

Efx(t)y(t + �)g = �xy(�) = lim
T!1

1

2T

Z T

�T

x(t)y(t+ �)dt (3.32)

where �xy(�) is called the crosscorrelation function and yields information as to the

dependence or correlation of x(t) to y(t). y(t) is a second random signal.

Assuming that the time functions given by (3.31) and (3.32) are Fourier trans-

formable, the Fourier transform of the autocorrelation and the crosscorrelation func-

tions are de�ned as

	xx(j!) =
1

2�

Z
1

�1

�xx(�)e
�j!�

dt (3.33)

	xy(j!) =
1

2�

Z
1

�1

�xy(�)e
�j!�

dt (3.34)

where 	xx(j!) is called the power spectral density (PSD) function and is 	xy(j!) called

the cross power spectral density function.

The autocorrelation is the Inverse Fourier Transform (IFT) of its PSD.

Consider the following linear time-invariant system with transfer function g1(t):

x(t)9 9 Kg1(t) 9 9 Ky(t) (3.35)

where the input and output are related by

y(t) =

Z
1

�1

x(t� �)g1(�)d� (3.36)
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The power spectral density function 	xx(j!) of the input x(t) and the power spectral

density function 	yy(j!) of the output y(t) have the following relationship:

	yy(j!) =j G1(j!) j2 	xx(j!) (3.37)

with G1(j!) being the transfer function of this system in the frequency domain.

The transfer function of the correlated error model of GPS position has the struc-

ture:

G1(s) =
r(s+ �)

s2 + 2�ks+ �2
(3.38)

The PSD 	cor(s) of the correlated error Xs(s) can be created by passing white noise

!(s) with a constant PSD 	white noise through the transfer function G1(s) :

!(s)9 9 KG1(s) 9 9 KXs(s) (3.39)

And

	cor(s) =j G1(s) j2 	white noise (3.40)

G1(s) can be used to create a shaping �lter for use as an estimation error model.

3.4.2 Error Modelling Using PSD and Autocorrelation

The GPS correlated errors are modelled by the transfer function (3.38). The poles,

zeros and the gain of G1(s) are determined using the PSD and the autocorrelation of

the GPS noise signals. In this section, the modelling techniques are presented.

To identify the GPS noise, raw data are collected from a known true position. For

example, Figure 3.3 shows the raw data in axis x collected during 12 hours at a �xed

position. At least 50 groups of data have to be collected to obtain an average PSD.

The noise data are obtained by removing the true position data from the raw data

as shown in Figure 3.4. It can be seen that the noises of standard GPS position output

are within 100 metres.

The Hanning window is applied to the noise data before the calculation of its power

spectral density and autocorrelation [48].
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Figure 3.3: Raw data of GPS position in x-axis.
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Figure 3.4: GPS correlated noise in x-axis
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Least Square Method

Once the PSDs are obtained, a least square �t method can be used to identify the

parameters of the transfer function.

Assume that the GPS correlated noise Xs is driven by a white noise of unit strength.

From Equation (3.40), in the frequency domain the PSD 	Xs
of the noise Xs has the

following relation with the model:

j 	Xs
(j!) j=j r(j! + �)

(j!)2 + 2�k(j!) + �2
j2 (3.41)

with the frequency series ! � f0;+1g:
Obtaining the logarithm base 10 of the elements of (3.41):

10 lg j 	Xs
(j!) j= 20 lg j r(j! + �)

(j!)2 + 2�k(j!) + �2
j (3.42)

= 10 lg
r(!2 + �

2)

[(! + �
p
1� k2)2 + �2k2][(! � �

p
1� k2)2 + �2k2]

Set k1 =
p
1� k2; and

fw =
r(!2 + �

2)

[(! + �
p
1� k2)2 + �2k2][(! � �

p
1� k2)2 + �2k2]

(3.43)

Then

fw =
r(!2 + �

2)

(!2 + �2 + 2!�k1)(!2 + �2 � 2!�k1)
(3.44)

=
r(!2 + �

2)

(!2 + �2)2 � 4!2�2k21

Equation (3.42) can be simpli�ed as

!
2
r + y � pfw � 2q!2fw + 4u!2fw = fw!

4 (3.45)

when

y = r�
2
; zw = (!2 + �

2)2; u = �
2
k
2
1 (3.46)

p = �
4
; q = �

2
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That is:

�
!
2 1 �fw �2!2fw 4!2fw

�
�

2
66666666664

r

y

p

q

u

3
77777777775
= fw!

4 (3.47)

The least square equation (3.47) can be used to obtain the parameters r; y; p; q; u

which can be transformed to �; k; r; � by (3.46). Back to (3.43) and (3.42), fw can be

obtained from the PSD of raw data 10 lg j 	Xs
(j!) j:

fw =
10 lg j 	Xs

(j!) j
10

(3.48)

Curve Fitting Method

Curve �tting can also be used to obtain the parameters of the model.

Figure 3.5 shows the PSD plot of GPS correlated noise in axis x given in the WGS-84

frame. The curve has a cut-o� frequency at approximately 0.0018Hz. The roll-o� rate

after this cut-o� is about �40dB=decade. This roll-o� shows that there are two poles in

the transfer function of the error model. There is also a slope change to �20dB=decade
at the frequency 0:01Hz which indicates that there is a zero in the transfer function. In

the end of the curve, there is some white noise. This PSD curve shows the character

of the 2nd order system:

G1(s) =
r(s+ �)

s2 + 2�ks+ �2
(3.49)

The PSD plot characteristics are identical to the system (3.30).

The parameters in (3.49) therefore can also be obtained from curve �tting manually.

To model the errors accurately, 50 groups of raw data were collected to average

the PSD evaluation. Each group must contain the consecutive raw data for at least 30

minutes. The PSD mean curve which is the average PSD of these 50 groups of data is

shown in Figure 3.6. Also shown in this �gure is the PSD curve using the estimated
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parameters. The parameters are adjusted until the curve of the estimated PSD best

�ts the raw PSD curve.

The best �tting PSD curve is obtained by manually adjusting these curves and

visual inspection. The model parameters are consequently the best �tted �; �; k and r

in that curve. This PSD curve �tting technique can be applied to any position correlated

noise in any axis in any frame. Once the model is determined, a traditional shaping

�lter can be introduced using the transfer function (3.49).

3.5 De-correlate GPS Noise Using INS

3.5.1 Shaping Filter

A shaping �lter models a correlated noise as a linear system driven by white noise [49].

The output of the shaping �lter is the observed measurement error. The PSD model of

GPS correlated noise can be expressed in block diagram form in Figure 3.7 as a shaping

�lter.

The input of this shaping �lter is a unity white noise !sp(t). The output Xs(t) is
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Figure 3.7: Shaping �lter.
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the GPS correlated noise. Its state space form is given by:

_Xs(t) = �2�kXs(t) +Xss(t) + r!sp(t) (3.50)

_Xss(t) = ��2Xs(t) + r�!sp(t)

That is: 2
64 _Xs(t)

_Xss(t)

3
75 =

2
64 �2�k 1

��2 0

3
75
2
64 Xs(t)

Xss(t)

3
75+

2
64 r

r�

3
75!sp(t) (3.51)

Suppose there is a system withm�1 state vector x(t) and p�1 measurement vector
z(t):

_x(t) = F (t)x(t) +G(t)!(t) (3.52)

z(t) = H(t)x(t) + ns(t) + v(t)

The system process noise !(t) is a q � 1 white noise vector. The measurement is

corrupted by white noise v(t) and nonwhite correlated noise ns(t) with:

ns(t) = Xs(t) (3.53)

De�ne the augmented state vector process xa(t) as:

xa(t) =

2
66664

x(t)

Xs(t)

Xss(t)

3
77775 (3.54)

The augmented state process model can be written as

_xa(t) =

2
66664

_x(t)

_Xs(t)

_Xss(t)

3
77775
(m+2)

(3.55)

=

2
66664

F (t) 0m�2 0m�2

01�m

01�m

�2�k 1

��2 0

3
77775

2
66664

x(t)

Xs(t)

Xss(t)

3
77775+

2
66664

G

01�q

01�q

0q�1

r

r�

3
77775
2
64 !(t)

!sp(t)

3
75
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The augmented system output can be written as:

z(t) =

�
H(t) Ip0p

�
2
66664

x(t)

Xs(t)

Xss(t)

3
77775+ v(t) (3.56)

= Ha(t)� xa(t) + v(t)

with

Ha(t) =

�
H(t) 0p�2

�
(3.57)

The augmented system with shaping �lter is depicted in Figure 3.8. It is noted that

the only driving noise in the augmented system is white noise. It consequently satis�es

the basic assumption for the Kalman �lter that the non-model dynamics noise is white.

The coloured noise ns(t) will only be de-correlated from the GPS measurement by

external information.

3.5.2 De-correlation of GPS Noise Using Feedforward Filter

Description of the De-correlation Filter

When using a single GPS with correlated noise, the system will exhibit almost identical

behaviour regardless of whether the GPS error has been modelled. Further sensing is

needed to aid the de-correlation of the coloured noise to improve system accuracy [17].

Consider a �lter in one dimension with the combination of a GPS and an INS as in

Figure 3.9.

Suppose that the acceleration, velocity and position of INS outputs and the position

output of GPS have been transformed into the same navigation frame. Assuming that

the acceleration is corrupted by white noise wins(t) only. The �lter states x(t) are INS

position error dr(t), INS velocity error dv(t) and two GPS shaping states Xs(t), Xss(t) :

x(t) = [dr(t); dv(t);Xs(t);Xss(t)]
T (3.58)
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Figure 3.8: Shaping �lter generating measurement corruption noise.

Figure 3.9: Feedforward �lter with GPS and INS.
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and

dr(t) = eRins(t)�Rtrue(t) (3.59)

dv(t) = eVins(t)� Vtrue(t)
where Rtrue(t) and Vtrue(t) are the true position and true velocity in the navigation

frame. eRins(t) and eVins(t) are the outputs of INS position and velocity. The �lter

measurement z(t) is the di�erence between the GPS output eRGPS(t) and the INS

output eRins(t):
z(t) = eRGPS(t)� eRins(t) (3.60)

GPS outputs are corrupted by the coloured noise Xs(t) and white noise v(t).

We have the relation:

d _r(t) = dv(t) (3.61)

d _v(t) = wins(t)

and

z(t) = eRGPS(t)� eRins(t)
= [Rtrue(t) +Xs(t) + v(t)]� [Rtrue(t) + dr(t)]

= �dr(t) +Xs(t) + v(t) (3.62)

The �lter process model is given by2
66666664

d _r(t)

d _v(t)

_Xs(t)

_Xss(t)

3
77777775
= A

2
66666664

dr(t)

dv(t)

Xs(t)

Xss(t)

3
77777775
+Gf

2
64 wins(t)

!sp(t)

3
75 (3.63)

with the process noise being a white noise sequence:

w(t) =

2
64 wins(t)

!sp(t)

3
75 (3.64)
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where

A =

2
66666664

0 1 0 0

0 0 0 0

0 0 �2�k 1

0 0 ��2 0

3
77777775

(3.65)

Gf =

2
66666664

0 0

1 0

0 r

0 r�

3
77777775

(3.66)

The observation model is given by

z(t) = Hf � x(t) + v(t) (3.67)

with

Hf = [�1; 0; 1; 0] (3.68)

The process and observation noise covariance matrices are

Q = E[w(t)wT (t+ �)] =

2
64 q

2
ins 0

0 1

3
75 �(�) (3.69)

R = E[v(t)vT (t+ �)] = �
2
gps�(�) (3.70)

with the white noise variance q2ins on the acceleration output and the variance �2gps on

the GPS position observation.

De-correlation Feedforward Filter Performance in Frequency Domain and

Time Domain

In the frequency domain, the transfer function from the observation z(s) to the Kalman

�lter states estimate bx(s) is calculated by:

bx(s)
z(s)

= (sI4�4 �A+KHf )
�1
K (3.71)
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Figure 3.10: Bode plot of the feedforward �lter using a poor INS.

with the �lter gain K having been determined by the �lter parameters and the process

and observation noise.

For a single standard GPS without di�erential correction, the variance of position

error is about 20 � 20m2. The Bode plot of a low quality INS with a variance of the

acceleration output of 0:1�0:1(m=s2)2 is shown in Figure 3.10. From the plot it can be

seen that the gain for the shaping state estimate is very small. The performance of the

system in the time domain is shown in Figure 3.11. The GPS position output consists

of almost the entire correlated noise when the vehicle is stationary. The estimated

shaping state does not follow the shape of the GPS output. The estimate position

follows the INS output whose errors grow without bound due to no real-time correction

in this kind of �lter structure. De-correlation of GPS coloured noise fails with a poor

INS of this level quality. These results were presented by Figure 3.10.

Figure 3.12 is the Bode plot of the feedforward �lter using a high quality INS with

a variance of 1 � 10�6(m=s2)2 of the acceleration output. The gain for the shaping

state estimation in frequency band 10�4(rad= sec) to 10�2(rad= sec) is 0dB. Figure

3.13 shows the time domain performance of the system. The shaping state estimate
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Figure 3.11: Time domain performance of the feedforward �lter using a poor INS.

eXs has almost the same shape and magnitude as the GPS output which is almost the

entire coloured noise since the observation corresponds to a �xed position. The position

estimate error has been considerably reduced to 4m only.

Figure 3.14 shows the Bode plot of the transfer function (3.71) when the variance

of the INS noise changes from 0:1 � 0:1(m=s2)2 to 1� 10�6(m=s2)2:

The essential requirement for the variance of the acceleration noise for de-correlation

can be found from the Bode plot of the �lter transfer function. Therefore, in order to use

an indirect feedforward Kalman �lter to de-correlate GPS coloured noise with an INS,

the accuracy of the INS needs to be above a certain threshold which can be obtained

from the Bode plot.
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Figure 3.12: Bode plot of the feedforward �lter using a good INS.
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Figure 3.13: Time domain performance of the feedforward �lter using a good INS.
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numbers of the logarithm units. The units for the frequency and INS noise represent
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Figure 3.15: Indirect feedback �lter

3.5.3 De-correlation Using Indirect Feedback Filter

Filter Description

Using a feedforward �lter with INS to de-correlate GPS coloured noise can make the

position error grow without bound. An indirect feedback �lter can overcome this prob-

lem by using estimated INS error to correct the state. Figure 3.15 shows the �lter

structure.

The INS generates velocity and position at very high frequency. The �lter processes

the measurement di�erence between the GPS position and INS position at the GPS

sampling time. The �lter estimates the position error dr, velocity error dv and two

GPS shaping states, feeds back the error estimate to the INS position and velocity to

correct the INS velocity and position outputs of the �lter. The INS keeps generating

the output of the �lter until a new GPS observation is made. The �lter states are

still the INS position error dr, INS velocity error dv and two GPS shaping states Xs,

Xss. The process model and the observation model remain the same as the indirect

feedforward �lter as Figure 3.9.
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Filter Performance in Frequency Domain and Time Domain

The performance of the indirect feedback �lter is analyzed both in the frequency domain

and the time domain. It is found from the experiments that the quality of the INS still

a�ects the de-correlation in this �lter structure.

Figure 3.16 shows the Bode plot of the transfer function from the �lter observation

to the �lter estimate using a low quality INS with a noise variance of 0:1� 0:1(m=s2)2:
From the plot it can be seen that the gain for the GPS shaping state is very low.

The time domain performance is shown in Figure 3.17. The shaping state estimate

does not follow the shape and the gain of the GPS measurement which is almost the

entire coloured noise since the observation corresponds to a �xed position. The INS

position output and position estimate are bound over time. The GPS coloured noise

de-correlation does not work appropriately with this quality of INS.
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Figure 3.16: Bode plot of the feedback �lter with a poor INS.

1 � 10�6(m=s2)2 is the threshold value of the noise variance of an accelerometer.

The gain of the transfer function for the shaping state eXs is 0dB in the Bode plot before

10�2rad= sec as in Figure 3.18. This means that the shaping state estimate eXs tracks
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Figure 3.17: Time domain performance with a poor INS using a feedback �lter.

the observation which almost entirely consists of GPS coloured noise. Figure 3.19 shows

the performance in the time domain. The shaping state estimate eXs matches the GPS

measurement observations.

In order to generate de-correlation the quality of the INS can be obtained using

Figure 3.20. From the plot this essential variance requirement is still 3:16�10�6(m=s2)2

for a standard GPS with a variance of 20 � 20m2
:

Therefore, to use an indirect feedback �lter to de-correlate the GPS coloured noise,

the essential quality requirement of the accelerometer is the same as for the feedforward

�lter. The additional advantage with this approach is that the position estimate is

bound.

3.6 Conclusion

This chapter has introduced an improved GPS error modelling method in the frequency

domain. In previous work, the errors were modelled in the pseudo range and clock

o�set. The measurement from other sensors has to be converted into an equivalent
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Figure 3.18: Bode plot of the indirect feedback �lter with a good INS.
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Figure 3.19: Time domain performance of the indirect feedback �lter using a good INS.
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Figure 3.20: Bode plots of the transfer functions using indirect the feedback �lter. The
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unit are logarithmically scaled. The magnitude unit in the plots represent the power

numbers of the logarithm units. The units for the frequency and INS noise represent

the negative power numbers of the logarithm units.
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pseudo range to match the GPS measurement.

The model of the correlated noise in a GPS position has been derived using a second

order system driven by a white noise series.

The PSD model of the correlated position errors in any axis of any frame has been

proved to have an identical structure. The parameters of the position error model are

obtained from the PSD of the position raw data. By adjusting the poles, zero, damping

ratio and the magnitude of the estimate PSD curve against the PSD curve of raw data,

the best parameters can be found using the least square or the curve �tting methods.

The PSD model has been used in a shaping �lter. To de-correlate the GPS error,

another sensor has to be used. Two de-correlation �lters using an INS have been

discussed in this chapter. To use an indirect feedforward �lter with an INS, the position

estimate is not bound. The indirect feedback �lter has better behaviour with a bound

position estimate. The quality of the INS in both the de-correlate �lters is required for

the de-correlation. The essential variance of the INS has been found using the Bode

plot of the transfer function of the de-correlation �lters.

The GPS model developed in this chapter will be used in the data fusion �lter whose

observation contains GPS measurement.

Feedback and feedforward methods have been proposed to design a �lter that de-

correlates the GPS coloured noise. The minimal requirement for the external sensor is

also presented.



Chapter 4

INS Algorithm for Low Cost

IMU in Psi Angle Approach

4.1 Introduction

This chapter addresses the design of an INS algorithm for low cost IMUs with unknown

initial conditions using the psi angle approach in the computer frame.

Previous INS alignment algorithms are reviewed in Section 4.2. Self-alignment ap-

proaches are reviewed in Section 4.2.1. Analytic coarse alignment and gyrocompassing

are the major methods for self-alignment. They require measurements of the gravity

vector and the earth rate by three accelerometers and three gyros. In-motion alignment

is another approach for INS �ne alignment which is reviewed in Section 4.2.2. Most

of the published applications of in-motion alignment are based on �lters with known

initial attitudes. For low cost IMUs, the initial attitude errors are usually large. There

are very few works that have attempted to solve the problem.

In this chapter, a new algorithm is presented that does not require initial attitudes.

Section 4.3 describes the coarse alignment for raw data process and IMU turn-on biases

estimation. A method to determine the initial direction cosine matrix is formulated in

Section 4.3.2.

Unknown initial attitudes are solved in Section 4.4 by an in-motion alignment al-

70
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gorithm. The �lter process models and the measurement equations are developed in

Section 4.4.3. The non-linear �lter is implemented using the extended Kalman Filter

(EKF). The discrete �lter and Jacobian matrix are derived in Section 4.4.4.

Section 4.5 describes the navigation stage after the initial alignment. The continuing

alignment and the calibration of the system in the navigation are brie
y discussed in

this section.

4.2 Overview

The INS algorithm generates velocity, position and attitude information. The inputs

to the INS algorithm are the measured gyro and accelerometer outputs. The INS

algorithm outputs navigation data in a desired navigation frame. The main functions

executed in a strapdown INS algorithm are the integration of IMU measured angular

rate into attitude and also the transformation and integration of IMU measured speci�c

force acceleration, Coriolis acceleration and modelled gravity to the desired navigation

frame [50, 51].

The INS integration assumes the initial values of velocity, position and attitude.

Therefore an initial alignment phase is required before navigation begins.

Initial misalignment is one of the major error sources of the INS. During the initial

alignment phase, the attitude di�erence between the axes of the INS coordinate systems

and those of a chosen reference is estimated and removed. This attitude di�erence, or

misalignment consists of two tilt angles and an azimuth angle which have distinct e�ects

on the propagation errors of the INS. The Kalman �lter has been successfully used to

estimate the tilt and the azimuth errors of the INS. It is well known that the estimation

rate of the azimuth misalignment and the �nal value it reaches are the two factors that

determine the performance of the whole alignment process [52]. The initial alignment

can be performed either when the INS is at rest on ground or while the vehicle is in

motion.
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4.2.1 Self-alignment Review

One of the ground alignment methods is to obtain the INS initial attitude through

the use of external reference by optical techniques, magnetic heading sensors or other

external means. Most ground based applications consist of two phases: leveling and az-

imuth alignment [53]. Two self-alignment methods have been considered: gyrocompass

alignment and analytic alignment [27, 53, 54, 16, 55, 56, 57, 58, 4, 59] . The analytic

method is used for coarse alignment while the gyrocompass method is used for �ne

alignment [58, 53].

The analytic coarse alignment method determines the transformation matrix which

relates vectors in the desired navigation frame to the same vectors expressed in the

geographic frame or in other equivalent frames using the knowledge of the gravity g

and the earth rate vectors wie.

De�ne a vector v as

v = g �wie (4.1)

The alignment matrix Cng is given by:

C
n
g =

2
66664

(gn)T

(wnie)
T

(vn)T

3
77775

�1 266664
(gg)T

(w
g
ie)

T

(vg)T

3
77775 (4.2)

where the gravity vector g and the earth rate wie in the desired navigation frame n and

the geographic frame g are gn , gg, wnie and w
g
ie.

Britting [27] analyzed the errors of the analytic coarse alignment scheme by taking

into account the e�ect of instrument uncertainties and that the base motions are not

readily amenable to analytic methods. This method requires the vectors g and wie to

be measured.

For a gimbled INS, physical gyrocompass alignment consists of �nding the coor-

dinate transformation between local geographic axes and navigation axes by physical

gyrocompassing. The transformation matrix C
n
g is physically driven to be the unit

matrix.
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For strapdown INS, the initial alignment matrix represents the transformation from

the body frame to the navigation frame. This analytic alignment method can be used

for high accuracy applications in only the most benign of environments [27], since the

performance deteriorates because of angular disturbance vibrations and accelerations.

The measurement of the gravity and the earth rate could also be corrupted. Some

�ltering is introduced in order to reduce the e�ects of these vibrations. When a low-pass

�lter is used to obtain the average values of the measured quantities, the instantaneous

position of the body frame can vary considerably from its average position. A signi�cant

misalignment could exist when the system is switched to the navigation operation mode.

A self-corrective alignment scheme is introduced to re�ne the initial estimate of the

transformation matrix by using the error angles between the known reference frame

and the corresponding computed frame.

Many gyrocompassing algorithms for both gimbled INSs and strapdown INSs have

appeared in literature. Jurenka and Leondes developed an optimum controller for driv-

ing the alignment in 1967 [58]. Huang and White presented self-alignment techniques

for an IMU considering the �ne alignment of an INS platform whose base is subject

to vibration and whose sensors are subject to noise in 1975 [57]. The observability of

INS ground alignment was analyzed by Jiang and Lin in 1992 [53]. In the covariance

analysis of strapdown INS considering gyrocompass characteristics by Heung et al. in

1995 [56], it was found that cross-coupling terms in gyrocompass alignment errors can

signi�cantly in
uence the strapdown INS error propagation. The initial heading error

has a close correlation with the east component of gyro bias error, while initial level tilt

errors are closely linked to the accelerometer bias error. Heung et al. also developed a

multiposition alignment method for INS stationary alignment on ground in 1993.

Bar-Itzhack summarized INS error models for the ground alignment in 1988 [4]. All

these models in the literature assume that the initial misalignments are small angles

with errors of only a few degrees. The measurement of the earth rate is indispensable

and an essential input for the ground alignment.
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4.2.2 In-motion Alignment Review

If the initial alignment is carried out when the vehicle is in motion, the alignment is

called in-motion alignment. The initial condition can be obtained by transfer alignment.

Transfer alignment is the operation of aligning a slave INS with a master INS

comparing quantities computed by both INSs [60]. Direct transfer of the master INS

navigation states would not account for the fact that the slave INS is not pointed in

the same direction as the master INS. In the transfer alignment stage, the velocity

computed by the master INS is compared with the one computed by the slave INS and

the di�erence, which is indicative of the slave misalignment with respect to the master

INS, is processed by a Kalman �lter. This yields misalignment data as well as the

slave gyro and accelerometer error data. There are some other inertial measurement

matching methods such as velocity matching alignment and position update alignment

which achieve in-motion alignment by comparing estimates of velocity and position

generated by the aligning INS with estimates of the same quantities provided by the

master INS [1].

There are many issues concerning the transfer alignment algorithm design [52, 60,

61]. Bar-Itzhack investigated the azimuth observability enhancement that was accom-

plished by subjecting the INS to accelerations generated by manoeuvres of a combat

aircraft [52]. The e�ect of acceleration switching during INS in-motion alignment was

also analyzed [62].

To obtain high accuracy and a highly robust navigation system, inertial navigation

aided by other navigation references like star scanner, GPS, laser, radar, sighting devices

and Doppler have been widely used [63, 64, 65]. Complementary �ltering is the one

mutual aiding method implemented in the frequency domain [65]. It is applied to the

fusion of a compass-aided heading gyro, Doppler-inertial ground speed estimation and a

baro-inertial altimeter. In the time domain, Kalman �ltering with INS error models has

been the main tool for the implementation of aided INS in-motion alignment, navigation

and calibration stages. The assumption of small misalignment angles is implied in those
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�lterings and models.

4.2.3 Large Misalignment Problem Review

Ground alignment in the stationary stage using gyrocompassing, analytic alignment,

aiding attitude sensors and in-motion alignment using reference navigation information

have been the main methods for INS initial alignment. With the assumption of small

initial misalignments, Kalman �lter mechanizations using the INS error propagation

models have been designed and implemented for many years.

Ground self-alignment is limited to high resolution inertial measurement units which

are able to measure the vectors of gravity and the earth rate. For low cost IMUs, with

resolution lower than the quantities of the gravity or the earth rate, self-alignment

principles will not work. External sensors have to be employed to obtain the initial

attitude [16]. If external sensors are not available, the initial misalignment will be

large. Several attempts have been made to solve this problem.

Jiang and Lin [66] suggested an error estimation algorithm in the true frame for

ground alignment for an arbitrary azimuth. The misalignment is estimated by a combi-

nation of leveling error rates. However the misalignment propagation was not modelled.

In 1992, Pham introduced a Kalman �lter mechanization for strapdown INS airstart

with an unknown azimuth [28]. He assumed two small tilt misalignment errors and one

large heading error. Heading misalignment � is considered as a wander angle in a

wander angle frame and separated into two states sin� and cos� in the �lter. The

earth rate is still the required input in the �lter process model. The misalignment was

not modelled.

In 1994 and 1996, Scherzinger developed inertial navigator error models for large

heading uncertainty [9, 10]. The expected application was for alignment with an un-

known heading. The computer frame approach was used. Again, two states were used

to track one heading misalignment variable. An extended misalignment vector 	e was
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de�ned as:

	e = [ x;  y; sin z; cos z � 1] (4.3)

where the psi angle [ x;  y;  z] is the misalignment of the computer frame and the

platform frame. Scherzinger's model has a similar form of the psi angle model developed

in the literature by Benson [5] and Bar-Itzhack [24].

In 1997, Dmitriyev et al. published a nonlinear �lter method application in INS

alignment which discussed the problem of coarse alignment [8]. Error equations with a

nonlinear characteristic have been obtained with a considerable level of a priori coarse

uncertainty. The error model is designed in the true frame with the assumption of two

small tilt misalignments and one large heading misalignment. The nonlinear charac-

teristic of the problem was considered over a short period. As a result, the heading

misalignment rate was assumed to be zero. In the misalignment error models, the rates

of misalignment angles were coupled with the velocity errors and the velocity errors are

coupled with the misalignment angles.

In 1997, Rogers proposed another in-motion alignment method without the bene�t

of attitude initialization [67]. Similar to the methods of Pham and Scherzinger, Roger's

�lter contained two sine and cosine states of the heading error. Small tilts and large

heading error were assumed.

The psi angle models and quaternion models for three large misalignment error

angles in the computer frame developed in the previous chapter of this thesis provide

a solution to the unknown initial attitude problem. The additional two tilt angles and

one heading angle could be all large using the proposed models.

4.3 Coarse Alignment

An INS commonly uses the analytic alignment and the gyrocompass principle to per-

form self-alignment on ground. For a low cost IMU which cannot measure the earth

rate vector, external sensors must to be used.
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In this thesis, a low grade inertial measurement system, made by Watson Industry

INC. is used. The resolution of gyros and accelerometers for the Watson IMU are shown

in the following table:

Watson IMU IMU-1 IMU-2

gyros 1.0779�10�4 rad=sec 4.3115�10�4 rad= sec
accelerometers 0.0024 m=s2 0.0024 m=s2

Figure 4.1 shows the raw data of the Watson IMU-1 in a stationary stage.
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Figure 4.1: Resolution of Watson IMU-1.

The quantity of the earth rate vector is 7:2722�10�5rad=sec. Usually, the resolution
of accelerometers is high enough to measure the gravity vector. For this kind of IMU,

the coarse alignment can be partly performed using the acceleration data to detect the

tilt information. The coarse alignment algorithm is introduced here. The raw data

process which determines the average turn-on biases of the accelerometers and gyros is

included in the coarse alignment stage.
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Figure 4.2: Bank and elevation of Watson IMU.

4.3.1 Raw Data Process

Once the IMU is turned on, there are random biases in the accelerometers and gyros.

They have a crucial e�ect on attitude, velocity and position. The integration of the

biases of the accelerometers cause the position errors to increase quadratically over

time. The attitudes, direction cosine matrix and quaternions will also have important

errors from integrating the gyro biases. Therefore, the gyro biases will accumulate the

position errors over time proportional to the cube of the time index.

The following table gives examples of the e�ects on velocity and position by the

Watson IMU.

axis (IMU body frame) gyro bias (rad=sec) accelerometer bias (m=sec2)

x 0.004 0.008

y 0.008 0.2

z 0.003 0.03

Figure 4.3 shows the average biases of the three accelerometers and the three gyros
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of IMU-1 installed in the body frame over a period of 34 seconds.
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Figure 4.3: These six plots show the turn-on biases for the Waston IMU-1. The 2000

samples are taken over a period of 34 seconds. The units for the y axes in the top three

plots are m=s2. The units for the y axes in the bottom three plots are rad=s.

Figure 4.4 shows the quaternion errors due to the gyro biases in a stationary position

over 28 seconds. The four curves of the four elements [Q0; Q1; Q2; Q3] show linear

divergence over time.

The �rst order, the second order and the third order e�ects over time of the IMU

turn-on biases are shown in Figure 4.5. The acceleration \Vtx DOT" and \Vty DOT"

of axes x and y in the platform frame show a large linear divergence over time. The ve-

locity \V tx" and \V ty" show a quadratic divergence over time squared. The curves of

the position coordinates \dx WGS84" and \dy WGS84" have a third order relationship

with time.

The gyro bias of 0.008 rad=second and the accelerometer bias of 0.2 m=second2 will

cause a velocity error of 20 m=s and a position error of 200m over 28 seconds.

These results demonstrate that before the raw data can be used, it is essential to
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Figure 4.4: Quaternion errors due to gyro biases. The 1650 samples are taken over a

period of 28 seconds. The unit for the quaternions is 1.

0 500 1000 1500 2000
0

100

200

dx_WGS84
0 500 1000 1500 2000

−400

−200

0

200

dy_WGS84

0 50 100 150 200

0.05

0.1

0.15

0.2

Vtx_DOT

0 20 40 60

0

0.02

0.04

0.06

0.08
Vty_DOT

0 500 1000 1500 2000
0

10

20
V_tx

0 500 1000 1500 2000
−40

−20

0

20
V_ty

Figure 4.5: Errors of acceleration, velocity and position due to turn-on biases of IMU.

The units for y axes in the top two plots, the middle two plots and the bottom two

plots are m=s2; m=s and m respectively. Along x axes are data samples over time

taken at 84Hz in 20 seconds.
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remove the turn on biases. The method of bias determination is discussed here.

The frames of the Watson IMU are shown in Figure 4.2. The bank and elevation

information are de�ned as the angles with respect to the local level frame in Figure 4.2.

The average tilt angles from the tilt gyros are used to generate the coarse alignment

information.

Turn-on Biases of the Accelerometers

A time period during the stationary stage is selected. De�ne the vector of the average

output of the three accelerometers in the body frame:

F̂b = [f̂ bx; f̂
b
y ; f̂

b
z ]
T (4.4)

This is the sum of the true acceleration vector Fb in the body frame and the bias

vector of the accelerometers rb(0) in the body frame:

F̂b = Fb +rb(0) (4.5)

The true acceleration vector Fb is transformed by the gravity vector in the platform

frame:

Fb = C
b
p[0; 0;�g]T = (C

p

b )
�1[0; 0;�g]T (4.6)

where the direction cosine matrix Cbp is given by [68]:

C
p

b
=

2
66664
cos � cosH � sin� sinEL sinH � cosEL sinH
cos � sinH + sin� sinEL cosH cosEL cosH

� sin� cosEL sinEL

(4.7)

sin� cosH + cos� sinEL sinH

sin� sinH � cos � sinEL cosH

cos � cosEL

3
77775

where BK, EL and H are the average bank, elevation and heading information during

the stationary stage and

� = sin�1(
sinBK

cosEL
) (4.8)
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Therefore the bias vector of the accelerometers rb(0) is subtracted from (4.5):

rb(0) = F̂b � Fb

= [f̂ bx
^
; f by ; f̂

b
z ]
T � (C

p
b )
�1[0; 0;�g]T

=

2
66664
f̂ bx

f̂ by

f̂ bz

3
77775�

2
66664
� sin� cosEL
sinEL

cosBK cosEL

3
77775 g (4.9)

The heading does not appear here.

Turn-on Biases of the Gyros

Theoretically, the turn-on biases of the gyros are derived from the earth rate. During

the coarse alignment, the vehicle which is stationary, senses the earth rate only. In the

platform frame, the output of the gyros Ŵ p is the sum of the earth rate 
ie and the

turn-on bias of the gyros rp:

Ŵ
p = 
ie +rp (4.10)

For the convenience of removal of the gyro biases from the raw data in the body

frame, the bias vector is converted into the body frame:

rb = C
b
p(0)rp = C

b
p(0)(Ŵ

p � 
ie) (4.11)

The earth rate term is ignored for a low cost IMU, therefore:

rb = C
b
p(0)Ŵ

p

= (Cbp(0))
�1(C

p
b (0)Ŵ

b)

= Ŵ
b =

2
66664
!̂
b
x

!̂
b
y

!̂
b
z

3
77775 (4.12)

To remove the turn on biases of the three gyros, the average gyro measurement

Ŵ
b =

�
!̂
b
x; !̂

b
y; !̂

b
z

�T
is removed from the raw data.
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Figure 4.6: Quaternions after removal of turn on biases of gyros. The unit for the

quaternions is 1. Along x axis are data samples over time taken at 84Hz.

After the removal of the turn-on biases, the raw data from the IMU can be used

directly for navigation. Figure 4.6 is a plot of quaternions over 28 seconds. Compared

with the Figure 4.4 before the removal of turn on biases, the four curves of the four

elements [Q0,Q1,Q2,Q3] are almost 
at without divergence.

The errors in acceleration, velocity and position are reduced after this process.

Figure 4.7 is a plot of computed acceleration, velocity and position in the platform frame

while the Watson IMU was moving in an oscillation trajectory of 20cm around a �xed

point for 320 seconds. As in Figure 4.7, the acceleration \Vtx DOT"and \Vty DOT"

of the axes x and y in the platform frame after 300 seconds are almost zero without

divergence. The velocity \V tx", \V ty" and position \dx WGS84", \dy WGS84" still

have some errors but are considerably smaller. The remaining biases are modelled and

will be removed by in-motion calibration algorithms.

4.3.2 Coarse Leveling - Initial Direction Cosine Matrix

The purpose of the leveling algorithm is to obtain the initial attitudes of the INS, that

is the initial direction cosine matrix or the initial quaternions. The turn-on biases of
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Figure 4.7: Acceleration, velocity and position after removal of turn-on biases. Along x

axes are data samples over time taken at 84Hz. The units for the y axes in the top two

plots, the middle two plots and the bottom two plots arem=s2, m=s andm respectively.

the accelerometers and the gyros are also computed at this stage. The coarse leveling

alignment is conducted on-ground. The inertial cosine matrix for the psi angle approach

will be considered.

The direction of the axes x, y and z is de�ned as east-north-up of the local level

frame. The initial direction cosine matrix is constructed by the initial attitude and the

initial heading. In the coarse alignment mode, the vehicle remains stable for at least

15 seconds. Average bank and elevation are recorded as BK and EL. The heading is

unknown for a low cost INS and will be solved by the in-motion alignment algorithm.

Assuming an arbitrary heading input H, the initial direction cosine matrix C
p

b
between

the body frame and the platform frame is given by Equation (4.7).

The computation uses the average bank and elevation data during the stationary

stage. The vehicle position may be changed from its average position. Due to the noise

and the vibration of the vehicle, this estimation of leveling is only an approximation.

The �ne alignment will be performed during the in-motion alignment stage when the

vehicle starts to move.
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Figure 4.8: Heading error de�nition.

4.4 In-motion Alignment: Solution of Initial Attitude Un-

certainty

4.4.1 Introduction

The coarse alignment takes about 15-20 seconds to obtain the initial values of the

navigation needs except the initial heading of the IMU. The purpose of the in-motion

alignment in this thesis is to solve heading uncertainty. The calibration of the direction

cosine matrix or the quaternions, the correction of the velocity and the position errors

and calibration of the accelerometers and the gyros are also done at this stage.

A low cost IMU cannot work alone due to the drift and nonlinearity of the inertial

sensors. External velocity or position information has to be employed to aid the INS.

GPS is an ideal source to aid an INS.

In this section, heading uncertainty is solved during in-motion alignment using

GPS information. The psi angle model for large angle errors developed in the previous

chapter is applied.

As illustrated in Figure 4.8, the true heading error is the misalignment between the
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platform north and the true north of the true local level frame at the true position. The

position is aided by external position reference. The position error of the computed

position and the true position is small. Therefore the north of the computer frame

is very close to the true north of the true local level frame at the true position. The

misalignment  z between the computer frame and the platform frame is approximately

the heading error. The correction of  z consequently becomes the goal of the heading

uncertainty algorithm.

In-motion alignment commences after the coarse alignment. The initial heading

entry is arbitrarily set.

When the GPS �x is not available, the INS performs vehicle navigation in the

platform frame at each IMU sampling time. The gyros of the IMU output the angular

rate of the vehicle in the body frame which can be used to calculate the direction cosine

matrix. The accelerometers output the acceleration of the vehicle in the body frame

which is transformed into the platform frame by the direction cosine matrix . The

INS navigation outputs the attitude, velocity and position in the platform frame by

integrating the angular rate, acceleration and velocity respectively.

When the GPS �x becomes available, the velocity and position measurements of

the GPS �x are processed. A nonlinear �lter based on the computer approach (the psi

angle approach) estimates the psi angle errors, velocity errors and position propagation

errors of the INS in the computer frame and the drift errors of the accelerometers, the

gyros and the GPS errors. The nonlinearity of the �lter is due to the nonlinearity of

the psi angle model for large heading errors between [�180�;+180�]. The estimates

of the errors are used to correct the velocity, position and attitude. The readings of

the accelerometers, gyros and the GPS measurement are also compensated by the �lter

estimation of the sensor errors.

The algorithm runs until the errors are corrected. The three attitude errors are now

all satis�ed to the small angle assumption. The psi angle model can be switched to

its small angle form. The algorithm is then switched from the alignment mode to the

navigation mode which still employs the same �lter, only the psi angle model switches



4.4 In-motion Alignment: Solution of Initial Attitude Uncertainty 87

to its small angle form.

The 
ow chart of the algorithm is shown in Figure 4.9.

4.4.2 Filter States

The �lter in the heading correction stage is performing alignment and calibration. The

�lter states include the propagation errors of the velocity, position and attitude errors

in the computer frame. Measurement errors are contained in the shaping �lter which

is part of the alignment and calibration �lter. X being the �lter state vector, then:

X = [�V c
x ;�V

c
y ;�V

c
z ;�R

c
x;�R

c
y;�R

c
z;  x; y; z; (4.13)

rbx;rby;rbz;�bx; �by; �bz;Xsx; Xsy;Xsz;X2x;X2y ;X2z]
T

where

�V c = [V c
x ;�V

c
y ;�V

c
z ]
T is the INS velocity error vector in the computer frame.

�Rc = [�Rcx;�R
c
y;�R

c
z]
T is the INS position error vector in the computer frame.

 = [ x; y; z]
T is the psi angle vector, which is the angle between the computer frame

and the platform frame.

rb = [rbx;rby;rbz]T is the vector of the accelerometer biases in the body frame.

�
b = [�bx; �

b
y; �

b
z]
T is the vector of the gyro biases in the body frame.

Xs = [Xsx;Xsy;Xsz]
T and Xss = [X2x;X2y; X2z ]

T are the shaping states of the GPS

errors.

4.4.3 Filter Equations

The main �lter equations are the error propagation models in the computer frame.
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Figure 4.9: Flow chart of heading correction and �lter estimation using the psi angle

approach.
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Velocity Error Equation

The velocity error equation has been presented in the previous chapter. In a case where

the coarse alignment is not performed, there will be three large initial attitude errors.

The psi angle vector will have three large elements.

� _V c = (I � Ccp)fpt +rc +�gc � (2
cie +
cec)�V
c (4.14)

where Ccp is given by:

C
c
p =

2
66664
cos x cos z � sin x sin y sin z � cos y sin z
cos x sin z + sin x sin y cos z cos y cos z

� sin x cos y sin y

sin x cos z + cos x sin y sin z

sin x sin z � cos x sin y cos z

cos x cos y

3
77775 (4.15)

In most cases, when the coarse alignment has been done with an unknown azimuth,

there will be two small initial tilt errors and one large heading error. The psi angle is

still large.

For most low cost INSs, the area of operation is close to the earth surface. The

gravity has very small variation. In this case, the gravity error model can be ignored
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and the velocity error equation can be simpli�ed to:

� _V c =

2
66664
0 �[V c

x tg(')=R0 + 2!ie sin(')]

V
c
x tg(')=R0 + 2!ie sin(') 0

�[V c
x =R0 + 2!ie cos(')] �V c

y =R0

V
c
x =R0 + 2!ie cos(')

V
c
y =R0

0

3
77775�

2
66664
�V c

x

�V c
y

�V c
z

3
77775+ (4.16)

+

2
66664
1� cos( z) sin( z) � x sin( z)�  y cos( z)
� sin( z) 1� cos( z) + x cos( z)�  y sin( z)
 y � x 0

3
77775

2
66664
f
p
x

f
p
y

f
p
z

3
77775+

+

2
66664
cos( z) � sin( z)  x sin( z) +  y cos( z)

sin( z) cos( z) � x cos( z) +  y sin( z)

� y  x 0

3
77775Cpb

2
66664
rbx
rby
rbz

3
77775

where

V
c = [V c

x ; V
c
x ; V

c
x ]
T is the velocity vector in the computer frame.

R0 is the earth radius. For a low cost INS, travel distance is limited and the earth

radius is considered to be a constant.

!ie is the earth rate.

' is the local latitude solved in navigation.

g is the gravity constant.

[f
p
x ; f

p
y ; f

p
z ]
T is the speci�c force transformed to the platform frame.

C
p

b is the direction cosine matrix with which INS actually transforms the vectors from

the body frame to the platform using measured INS angular rate in navigation

mode.
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Position Error Equation

The position error model does not distinguish between small and large attitude errors:

� _Rc = �V c � 
cec�R
c (4.17)

The extension of the position error equation is:

� _Rc =

2
66664
�V c

x

�V c
y

�V c
z

3
77775�

2
66664
0 �V c

x tg(')=R0 V
c
x =R0

V
c
x tg(')=R0 0 V

c
y =R0

�V c
x =R0 �V c

y =R0 0

3
77775

2
66664
�Rcx

�Rcy

�Rcz

3
77775

The notation is as before.

Psi Angle Model

The attitude and heading errors are solved in the form of the psi angles. The psi angle

model developed in Chapter 2 is described here in detail.

The general  angle model is given by equation (4.18):

_ = (I � Cpc )!cic � �p (4.18)

where C
p
c is given by:

C
p
c =

2
66664
cos x cos z � sin x sin y sin z

� cos y sin z
sin x cos z + cos x sin y sin z

cos x sin z + sin x sin y cos z

cos y cos z

sin x sin z � cos x sin y cos z

� sin x cos y
sin y

cos x cos y

3
77775 (4.19)

When the three initial attitudes are all unknown, or in the large perturbation case

when the errors of the three attitudes are all large during the navigation stage, the  

angle model with large angle assumption has to be used.

In most cases, the initial tilt angles can be solved within an error of 1� in the coarse

alignment stage, while the heading remains unknown. In this case,  x and  y are small
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and  z is large within [�180�;+180�]. The psi angle equation in this case is extended

to:

_ =

2
66664
1� cos( z) � sin( z)  y

sin( z) 1� cos( z) � x
� x sin( z)�  y cos( z) + x cos( z)�  y sin( z) 0
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Sensor Error Equations

In both the alignment and the navigation stages, the errors of the IMU sensors and

GPS can be estimated and calibrated in-motion. The error models are included in the

process model of the �lter.

For a low cost IMU, the drift over a long period of time can be signi�cant. Internal

temperature variation could also cause bias changes.

The biases in the gyros and the accelerometers can be modelled as [45, 69]:

_rb = �r
b

Ta
+
a1

Ta
(4.21)

_�b =
��b
Tg

+
b1

Tg
(4.22)

The model parameters Ta; Tg; a1 and b1 are obtained experimentally.

In a case where the IMU has slow internal temperature variation, the gyro and

accelerometer errors can be modelled as white noise plus a constant:

_rb = 0 (4.23)

_�b = 0

The white noise is to be added on top of these.

The error model for the GPS has been presented in the previous chapter. The
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shaping states Xs and Xss of the GPS position error have the following relations:

_Xs = �2�kXs +Xss + r!sp (4.24)

_Xss = ��2Xs + r�!sp

That is: 2
64 _Xs

_Xss

3
75 =

2
64 �2�k 1

�
2 0

3
75
2
64 Xs

Xss

3
75+

2
64 r

r�

3
75 [!sp] (4.25)

with the white noise !sp.

Measurement Equations

The �lter observation is the di�erence between the GPS measurement and the INS

output. It must be noted that these two di�erent outputs are in two di�erent frames.

When the di�erential GPS with the position error of 2cm and the velocity error of

5cm=second is used as the navigation reference, the velocity and the position of the

DGPS are considered to be solved and transformed into the true local level frame.

Let the velocity di�erence Vd and the position di�erence Rd be the di�erence be-

tween the INS outputs and measured GPS outputs:

Vd = bV c
INS � bV t

GPS (4.26)

Rd = bRcINS � bRtGPS (4.27)

where the superscripts c and t indicate whether the vectors are in the computer frame

or in the true frame. bRcINS and bV c
INS are the INS computed position and velocity.

bRtGPS and bV t
GPS are the GPS position and velocity outputs respectively.

When the GPS error model is proposed, the observation has the following form:

Z = Rd = bRcINS � bRtGPS (4.28)

= (Rctrue +�Rc)� (Rttrue +Xs + �gps)

= (Rctrue �Rttrue) + (�Rc �Xs � �gps)

= (I3�3 � Ctc)Rctrue + (�Rc �Xs � �gps)
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where �gps = [�x;�y;�z]
T is the white noise of GPS measurement. Rttrue and R

c
true are

the true position in the computer frame and the true frame respectively.

Since the position is aided, the INS computed position and the true position will

have small errors. The computer frame c; which is the local level frame at the computed

position, and the true local level frame t at the true position will have a small di�erence
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in orientation. Therefore Ctc � I3�3 in the observation equation. Consequently:

Rd = �Rc �Xs � �gps

=

2
66664

�Rcx

�Rcy
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3
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3
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(4.30)

When the DGPS is used, the observation can be considered as corrupted by white
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noise only. The observation z is:

Z =

2
64 Vd

Rd

3
75

Vd = bV c
INS � bV t

GPS

Rd = bRcINS � bRtGPS (4.31)

And

Vd = bV c
INS � bV t

GPS

= (V c
true +�V c)� (V t

true +�gps)

= (V c
true � V t

true) + (�V c ��gps)

= (I3�3 � Ctc)V c
true +�V c ��gps (4.32)

where

�gps = [�x;�y;�z]
T is the white noise of the DGPS velocity measurement.

V
c
true is the true velocity in the computer frame.

V
t
true is the true velocity in the true frame.

Again, Ctc � I3�3 in this case. Therefore

Vd = �V c ��gps (4.33)

And

Rd = bRcINS � bRtGPS
= (Rctrue +�Rc)� (Rttrue + �gps)

= (I3�3 � Ctc)Rctrue +�Rc � �gps

= �Rc � �gps (4.34)
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The observation equation will be:

Z =

2
64 Vd

Rd

3
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4.4.4 Discrete Filter and Jacobian Matrix

The process model of the �lter in the in-motion alignment stage is nonlinear. The

Kalman �ltering process has been designed to estimate the state vector in a linear

model. It has many successful applications in INS alignment and navigation. If the

model turns out to be nonlinear, a linearization procedure is usually performed in

deriving the �ltering equations. The linear Taylor approximation of the process model

at the previous state estimation and that of the observation model at the corresponding

predicted position is usually considered [18, 70]. The Kalman �lter so obtained is called

the Extended Kalman Filter (EKF). Linearization is justi�ed by the argument that

the estimate maintained by the EKF is close to the true state of the system. The
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expected values of the second and higher-order terms in the Taylor series expansion

are small [19]. Jacobian matrices of the process and observation models have to be

evaluated. The Distribution Approximation Filter which is introduced by Julier and

Uhlman [19, 20, 21, 22, 23] provides another approach for nonlinear �ltering.

The Extended Kalman �lter is employed in this section for the psi angle approach,

where for the navigation update, direction cosine matrices are used for attitude update

purposes.

The update stage is performed at each data fusion step when a GPS �x is available.

Usually, the INS sampling time is less than the sampling time of the GPS. For example,

the sampling frequency of the Watson IMU and the Ashtech GPS are 82Hz and 10Hz

respectively. During the period when a GPS �x is not available, INS computes and

outputs the navigation data independently without the �lter prediction.

The �lter in continuous time is the combination of the equation in Section 4.4.3.

The whole �lter can be written as:

X(t) = fc(t;X(t)) +G(t)U(t) (4.36)

Z(t) = HX(t) + V (t)

The strengths of U(t) and V (t) are Q(t) and R(t) respectively.

The discrete-time model is:

X(tk) = X(tk�1) + fc(tk;X(tk))dt+G(tk)U(tk)dt

Z(tk) = H(tk)X(tk) + V (tk) (4.37)

where dt is the time interval between tk�1 and tk:

This compares with the standard form of the discrete-time �lter:

Xk+1 = fk(Xk) +Gkuk

Zk = HkXk + vk (4.38)
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with:

Gk = G(tk)dt (4.39)

uk = U(tk) (4.40)

vk = V (tk) (4.41)

The approximation is also given:

fk(Xk) = X(tk�1) + fc(tk;X(tk))dt (4.42)

This relationship provides a shortcut to evaluate the Jacobian matrix Jf at time

tk in discrete time by using the Jacobian matrix Jc(t) at time tk in continuous time,

which can be directly derived from the �lter models:

Jf (k) =
@fk(Xk)

@Xk

� I + @fc(tk;X(tk))

@Xk

dt

= I + Jc(tk)dt (4.43)

The derivation of the Jacobian matrix Jc of the �lter at time tk is more complicated.

For example, when the noise of the accelerometers and the gyros is treated as white

noise plus a constant and the DGPS is used, the Jacobian matrix in continuous time is

derived as follows.

The �lter can be separated into a linear part and a nonlinear part plus the noise:2
66666666664
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Then the Jacobian matrix is evaluated as:

Jc =

2
66666666664

�(2
cie +
cec) 03�3 F13

I3�3 �
cec 03�3

03�3 03�3 F33

I3�3 03�3
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03�3 I3�3

06�15

3
77777777775

(4.45)

When only the heading is unknown, the matrix elements F13 and F33 in Jc are:

F13 =

2
66664
� sin ( z) fpz � cos ( z) fpz
cos ( z) f

p
z � sin ( z) fpz

�fpy f
p
z

f
p
x sin ( z) + f

p
y cos ( z) + ( y sin ( z)�  x cos( z))fpz

sin ( z) f
p
y � cos ( z) f

p
x � ( x sin ( z) +  y cos( z))f

p
z

0

3
77775 (4.46)

And

F33 =

2
66664

0 w3

�w3 0

� sin ( z)w1 + cos ( z)w2 � cos( z)w1 � sin( z)w2

sin ( z)w1 � cos ( z)w2

cos( z)w1 + sin( z)w2

( y sin( z)�  x cos( z))w1 � ( y cos( z) +  x sin( z))w2

3
77775 (4.47)

where

w1 = �V c
y =R0

w1 = V
c
x =R0 + wie cos(')]

w3 = V
c
x tan(')=R0 +wie cos(') (4.48)

' is the local latitude. All the variables in the Jacobian matrices above are evaluated

at time tk.
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The �lter noise has the following attributes:

When the IMU noise is considered as white noise plus a constant and the noise is

estimated in the �lter, G at time tk is evaluated as:

G(tk) =

2
66666666664

C
p
b (tk) 03�3

03�3 03�3

03�3 �Cp
b
(tk)

06�6

3
77777777775

(4.49)

Then in the continuous-time �lter:

G(tk)U(tk) =
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where C
p
b (tk) is the direction cosine matrix from the body frame to the platform which

is solved in navigation at time tk.

In the discrete-time �lter (4.38), uk and vk are white noise sequences with strength

Gk and Rk. They can be approximated as [71]:

Qk = G(tk)Q(tk)G
T (tk)dt

Rk = R(tk)=dt

4.4.5 Filter Implementation Using the EKF

The �lter real time implementation can be seen in Figure 4.9. The �lter state X is

initially modelled as a Gaussian random variable X0;0 at the epoch when the coarse

alignment �nished and the in-motion alignment starts. Take the zero-mean of the

Gaussian variable for initialization. The initial X is given as X0;0:

X0;0 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]T (4.51)
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The initial covariance matrix P0;0 provides a statistical measure of con�dence of the

states:

P0;0 =

2
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P0;0 is assumed diagonal for lack of su�cient statistical information to evaluate its

o�-diagonal terms.

The initial dynamic process noise matrix is set as Q0:

Q0 =

2
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(4.53)

The initial measurement noise matrix is set as R0:

R0 =

2
666666666666664

r
2
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0 r
2
ry 0 0 0 0

0 0 r
2
rz 0 0 0

0 0 0 r
2
vx 0 0

0 0 0 0 r
2
vy 0

0 0 0 0 0 r
2
vz

3
777777777777775

(4.54)

The diagonal terms of R0 are the variance of the noise on INS and GPS measure-

ments.
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At time tk; the state estimation is Xk;k�1, with the covariance matrix Pk;k�1 being

available. The Jacobian matrix of fk is then evaluated as:

Jf (k) = I + Jc(tk)dt (4.55)

The �lter gain Kk is calculated by:

Kk = Pk;k�1H
T
k (HkPk;k�1H

T
k +Rk)

�1 (4.56)

The updated measurement is fused into the �lter. The updated state estimation

Xk;k is:

Xk;k = Xk;k�1 +Kk(Zk �HkXk;k�1) (4.57)

Since the errors have been compensated at each �lter time, Xk;k�1 is zero. There-

fore, the updated estimation of states which is used to correct navigation output and

calibration sensor errors is:

Xk;k = KkZk (4.58)

The covariance update is:

Pk;k = (I �KkHk)Pk;k�1 (4.59)

For the next iteration tk+1, the a priori state estimation will be:

Xk+1;k = fk(Xk;k) (4.60)

with an a priori covariance matrix:

Pk+1;k = Jf (k)Pk;kJ
T
f (k) +Gk+1QkG

T
k+1 (4.61)

The estimation of the states is used to correct the system errors by subtracting each

estimated error from the INS velocity, position, attitude, accelerometer output data,

gyro output data and GPS position data, as shown in the 
ow chart in Figure 4.9.
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4.5 Navigation Stage: Continue Alignment and Calibra-

tion

Once the attitude errors diminish to a few degrees, the in-motion alignment stage

�nishes. The velocity error model, position error model, psi angle model will be switched

to their small angle approximations.

The process models are replaced to their small angle forms, the �lter process model

and the observation models are now all linear. A standard Kalman �lter is applied to

estimate the navigation state.

4.6 Summary

In this chapter, the INS algorithm for low cost IMUs is developed using psi angle

models for large attitude errors. The main contribution of this algorithm is the in-

motion alignment to solve the initial attitude uncertainty.

The alignment mode is separated into coarse alignment and in-motion �ne align-

ment. Section 4.3 presented the determination of the initial direction cosine matrix,

turn-on biases of the accelerometers and the gyros in the coarse alignment stage.

Section 4.4 presented the in-motion alignment approach with an unknown initial

condition. The psi angle models developed in this thesis are used as the �lter process

models. The Extended Kalman Filter is used to implement the nonlinear �lter.



Chapter 5

INS Algorithm for Low Cost

IMU in Quaternion Approach

5.1 Introduction

This chapter addresses the INS algorithm design for low cost IMUs using quaternions

in the computer frame.

The INS navigation equations are based on a quaternion approach. The quater-

nion equations are formulated and an update based on the Adams-Bashford method is

presented.

The �lter is composed of the INS velocity error model, the INS position error model

and the quaternion error model in the computer frame. The quaternion errors are ex-

ploited using the misalignment of the computer frame and the platform frame. The

entire �lter process model structure and the process noise are discussed. The process

noise vectors are reconstructed by a linear combination of the white noise on the ac-

celerometers and gyros in the body frame. A Distribution Approximation Filter (DAF)

is used instead of the EKF. The principle and the bene�t of the DAF are brie
y de-

scribed.

105
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5.2 INS Navigation Using Quaternions

5.2.1 Overview

An INS computes the current velocity, position and attitude from the initial velocity,

position and attitude and the time history of the kinematic acceleration. The gyros of

the IMU provide angular rates of the body frame to the inertial frame. An orienta-

tion transformation matrix is calculated using outputs of gyros to transfer the speci�c

force measured by the accelerometers to the navigation frames. Velocity and position

are consequently integrated by acceleration and velocity respectively in the navigation

frame.

In the previous chapter, the vehicle attitudes, the misalignment of coordinate sys-

tems and the orientation of the coordinate frames were represented by a set of angles

and the direction cosine matrix. In this chapter, they are represented by quaternions.

Quaternions were introduced by Hamilton in 1843 and are a set of four parameters

that evolve in accordance with a simple di�erential equation. Quaternions are less

amenable to direct physical interpretation. Although their elements have quadratic

forms, the quaternion approach is less computationally intensive, gives better accuracy

and avoids the singularity problem inherent in the Euler approach. It contains only four

parameters and uses the half angular increments [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 14].

The algorithm 
ow chart is shown in Figure 5.1.

The INS algorithm processes the raw data to estimate the turn on biases of ac-

celerometers and gyros. Coarse alignment is performed by setting up initial velocity,

position, attitude and quaternions. Initial quaternions are evaluated by the initial

attitude angles.

When external heading sensors are not available, ground coarse alignment cannot

be performed accurately. The psi angle approach described in the previous chapter

can be used to correct the attitude without initial attitude input. In this chapter,

another approach using quaternions instead of psi angles is developed. The velocity

error propagation model, position error model and quaternions propagation which are
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Figure 5.1: INS 
ow chart
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developed in this thesis are applied here.

5.2.2 Raw Data Process

The IMU provides raw data of acceleration and rotation rate in the body frame. Raw

data contain turn-on biases which can be estimated while stationary and removed at

each navigation step as described in the previous chapter.

An example of the raw data in axis x of the body frame is shown in Figure 5.2.

From time 15 seconds to 50 seconds, the vehicle is stationary. The average raw data
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Figure 5.2: Raw data of accelerometer x and gyro x.

of accelerometers and gyros are collected during this stage. Turn-on biases of three

accelerometers and three gyros are estimated and removed from the raw data. As in

the raw data plot, there is perturbation noise from time 38 seconds to 39 seconds which

cannot be estimated in real time. Therefore the calculated biases at this stage are not

accurate. The biases will also drift over time with temperature changes. They will be

estimated in the �lter and removed at each update step.
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5.2.3 Quaternions Initialization

To transfer the measured acceleration in the body frame to the platform frame, a

rotation transfer matrix has to be calculated to get the orientation of the vehicle at

each navigation step.

Quaternions are initialized while the vehicle is stationary. The initial rotation trans-

fer matrix is calculated by averaging bank, elevation and heading. Let the transfor-

mation matrix T0 be the initial direction cosine matrix from the body frame to the

platform frame. In the case where the initial attitudes are unknown, T0 can be set

arbitrarily. If coarse tilt information can be obtained and the heading is unknown, T0

can be set by coarse tilt and arbitrary heading.

The quaternion integrations are updated from the initial quaternion vector Q
p
b(1) =

[qn0(1); qn1(1); qn2(1); qn3(1)]
T .

T0 =

2
66664
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77775 (5.1)

with the constraint

q
2
n0(1) + q

2
n1(1) + q

2
n2(1) + q

2
n3(1) = 1 (5.2)

Then the solutions of (5.1) are:

qn1(1) =
1

2

p
1 + T0(1; 1) � T0(2; 2) � T0(3; 3) � sign(T0(3; 2) � T0(2; 3))

qn2(1) =
1

2

p
1� T0(1; 1) + T0(2; 2) � T0(3; 3) � sign(T0(1; 3) � T0(3; 1))

qn3(1) =
1

2

p
1� T0(1; 1) � T0(2; 2) + T0(3; 3) � sign(T0(2; 1) � T0(1; 2))

qn0(1) =

q
1� q2n1(1)� q2n2(1)� q2n3(1)

where sign(x) is +1 when x is positive, returns �1 when x is negative.
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5.2.4 Transformation Matrix Using Quaternions

At INS navigation time t, let C(Q
p

b) be the rotation transformation matrix from the

body frame to the platform frame represented by Q
p

b
(t) = [qn0(t); qn1(t); qn2(t); qn3(t)]

T .

Then:

C(Q
p
b) =

2
66664

2(q2n0(t) + q
2
n1(t))� 1 2(qn1(t)qn2(t)� qn0(t)qn3(t))

2(qn1(t)qn2(t) + qn0(t)qn3(t)) 2(q2n0(t) + q
2
n2(t))� 1

2(qn1(t)qn3(t)� qn0(t)qn2(t)) 2(qn2(t)qn3(t) + qn0(t)qn1(t))

2(qn1(t)qn3(t) + qn0(t)qn2(t))

2(qn2(t)qn3(t)� qn0(t)qn1(t))
2(q2n0(t) + q

2
n3(t))� 1

3
77775 (5.3)

The evaluation of this matrix is less computationally expensive than using the di-

rection cosine matrix.

5.2.5 Quaternion, Velocity and Position Update

In each step, the current quaternions are integrated from the information of the current

gyro outputs and the quaternions at the previous step. To update the quaternion vector

Q
p
b from time t to time t+ 1, the Adams-Bashford integration is used.

At time t, Q
p
b satis�es the following di�erential equation [32]:

_Q
p

b
=

1

2

nb �Qpb (5.4)

where the angular rate matrix 
nb is:


nb =

2
66666664

0 �wx �wy �wz
wx 0 wz �wy
wy �wz 0 wx

wz wy �wx 0

3
77777775

(5.5)

and

w
b
nb = [wx; wy; wz]

T (5.6)
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is the body frame rate with respect to the platform frame solved in the body frame.

This is derived by di�erencing the measured body frame rates wbib and the estimates

of the components of platform frame rate w
p
ip. w

p
ip is obtained by summing the Earth

rate with respect to the inertial frame w
p
ie and the turn rate of the platform frame to

the Earth frame w
p
ep. These rates have the following relation [27]:

w
p
in = w

p
ie + w

p
ep (5.7)

and

w
b
nb = w

b
ib � Cbp[wpie + w

p
ep] (5.8)

Let �t be the INS update interval and Q
p
b(t�2�t) and Qpb(t� �t) be the quaternions

at time (t�2�t) and (t��t). The angular rate matrix of the previous two steps (t�2�t)
and (t��t) are 
(t�2�t) and 
(t��t). To integrate the quaternion di�erential equation
(5.4), a 2-step Adams-Bashford method [82] is used. The quaternion at the current step

is given by [68]:

Q
p
b(t) = Q

p
b(t� �t) + (3
(t� �t)Qpb (t� �t)� 
(t� 2�t)Q

p
b (t� 2�t)) � 0:25�t (5.9)

Usually the INS sampling time is a constant. If there is a variation in �t, Q
p
b and 


are selected using the values of the last two steps. For the Watson IMU, the sampling

time is 0.008 seconds.

In the algorithm presented, the quaternion vector is normalized at each update

stage. Figure 5.3 is a plot of the actual norms of quaternions minus 1. The range is

within 5 � 10�16. Therefore the quaternions are normalized at each INS navigation

time.
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Figure 5.3: Quaternions' orthogonality

5.3 INS Algorithm for Low Cost IMU in Quaternion Ap-

proach

5.3.1 Introduction

It is argued that attitude transformation and update using quaternions can provide

more accurate results than the direction cosine matrix and the Euler method.

When a low cost IMU is used, initial attitude and initial quaternions are unknown.

Quaternion models for large attitude errors developed in this thesis can be used to solve

the initial quaternion uncertainty without additional heading sensors.

In this section, the quaternion approach in the computer frame is applied to the INS

in-motion alignment to solve large azimuth uncertainty. A Distribution Approximation

Filter (DAF) instead of EKF is used to implement the nonlinear �lter. One of the

advantages of this approach is that it does not require the evaluation of Jacobians.

The algorithm 
ow chart is shown in Figure 5.4.

During the quaternion initialization, the four elements of the quaternion vector

are evaluated under the assumption of an arbitrary attitude. The INS computes the
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Figure 5.4: Flow chart of the quaternion approach.
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navigation data at each INS sampling time starting with the �rst quaternion vector.

When a GPS �x is available, a �lter based on the velocity, position and quaternion

error models updates the states. The state vector consists of the INS velocity error,

the position errors, the quaternion errors in the computer frame and the IMU and GPS

error states. These estimates are used to correct the INS navigation and calibrate IMU

biases.

The computer frame is selected as the local level frame in east, north and up at the

INS computed position.

5.3.2 Filter Models

The �lter propagates the estimated errors of the INS. The �lter states in this algorithm

are: the INS velocity and position errors in the computer frame and the quaternion

errors. To simplify the presentation of the algorithm, the accelerometer biases and

the gyro biases in the body frame are considered as zero-mean white noises. The

experimental data in this thesis was obtained using a DGPS system. The shaping �lter

was not included in this case because the magnitude of the noise due to SA with this

type of di�erential GPS implementation was neglibe.

The state vector is:

X = [�V c
x ;�V

c
y ;�V

c
z ;�R

c
x;�R

c
y;�R

c
z; q0; q1; q2; q3]

T (5.10)

where

�V c = [V c
x ;�V

c
y ;�V

c
z ]
T is the INS velocity error vector in the computer frame.

�Rc = [�Rcx;�R
c
y;�R

c
z]
T is the INS position error vector in the computer frame.

Q
c
p = [q0; q1; q2; q3]

T is the quaternion vector which represents the rotation between

the platform frame and the computer frame.
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The system model is:

_X(t) = fc(X; t) +Gcu(t) (5.11)

Z(t) = HX(t) + w(t) (5.12)

where Equation (5.11) describes the continuous-time propagation equation. The �lter

state equations are nonlinear and u(t) is white noise. The measurement equations

are linear in this case and w(t) is white noise. The measurement vector contains the

di�erence between the INS velocity and position information and the GPS velocity and

position information.

Velocity Error Equation

Let �V c = bV c
t � V

c
t be the INS velocity error in the computer frame. The general

velocity error model for large attitude errors in quaternion form is:

� _V c = (I3�3 � C(Qcp))fpt � (2
cie +
cec)�V
c +�gc +rp (5.13)

Most low cost INSs are used in level navigation applications and consequently the

gravity error �gc can be ignored. The matrix C(Qcp) transforms the true speci�c force

f
p
t = [f

p
x ; f

p
y ; f

p
z ]
T
in the platform frame to the computer frame. It is given by:

C(Qcp) =

2
66664
q
2
0 + q

2
1 � q22 � q23 2(q1q2 � q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q
2
0 � q21 + q

2
2 � q23 2(q2q3 � q0q1)

2(q1q3 � q0q2) 2(q2q3 + q0q1) q
2
0 � q21 � q22 + q

2
3

3
77775 (5.14)

The earth rate matrix 
cie and the matrix 
cec of the rate of the computer frame in

respect to the earth frame are:

2
cie +
cec =

2
66664
0

V
c
x tg(')=Rx + 2!ie sin(')

�[V c
x =Rx + 2!ie cos(')]

(5.15)

�[V c
x tg(')=Rx + 2!ie sin(')] V

c
x =Rx + 2!ie cos(')

0 V
c
y =Ry

�V c
y =Ry 0

3
77775
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where ' is the local latitude. The earth rate !ie = 7:272205 � 10�5rad=second. The

earth radius elements Rx in the east direction and Ry in the north direction can be

considered as equal to R = 6; 378; 393m. The INS velocity components V c
x and V

c
y

are computed in the computer frame in east and north. Therefore the velocity error

equation must include the following transformation:

� _V c =

2
66664
� _V c

x

� _V c
y

� _V c
z

3
77775 (5.16)

= 2

2
66664

q
2
2 + q

2
3 �(q1q2 � q0q3) �(q1q3 + q0q2)

�(q1q2 + q0q3) q
2
1 + q

2
3 �(q2q3 � q0q1)

�(q1q3 � q0q2) �(q2q3 + q0q1) q
2
1 + q

2
2

3
77775

2
66664
f
p
x

f
p
y

f
p
z

3
77775�

�

2
66664
0

V
c
x tg(')=Rx + 2!ie sin(')

�[V c
x =Rx + 2!ie cos(')]

�[V c
x tg(')=Rx + 2!ie sin(')]

0

�V c
y =Ry

V
c
x =Rx + 2!ie cos(')

V
c
y =Ry

0

3
77775

2
66664
�V c

x

�V c
y

�V c
z

3
77775+

2
66664
rpx
rpy
rpz

3
77775

where rp = [rpx;rpy;rpz]T is the accelerometer error vector in the platform frame.

Position Error Equation

The position error vector in the computer frame is decoupled from the quaternions.

There are no di�erences in the position error model between the two cases whether the

misalignments of the computer frame and the platform frame are small or large. Let the

di�erence between the INS computed position and the true position in the computer

frame �Rc be the position error in the computer frame. The position error equation
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becomes:

� _Rc =

2
66664
� _Rcx

� _Rcy

� _Rcz

3
77775 = (5.17)

= �V c � 
cec�R
c

=

2
66664
�V c

x

�V c
y

�V c
z

3
77775�

2
66664
0 �V c

x tg(')=Rx V
c
x =Rx

V
c
x tg(')=Rx 0 V

c
y =Ry

�V c
x =Rx �V c

y =Ry 0

3
77775

2
66664
�Rcx

�Rcy

�Rcz

3
77775

Quaternion Error Model

The attitude error here is modelled using the quaternion vector Qcp = [q0; q1;q2;q3]
T

which represents the misalignment of the platform frame and the computer frame.

Let

B =
1

2

2
66666664

�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

3
77777775

(5.18)
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Then the quaternion error model can be written:

_Qcp = B[(I � C(Qpc))!cic � �p]

=

2
66666664

�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

3
77777775

2
66664

q
2
2 + q

2
3

�(q1q2 � q0q3)
�(q1q3 + q0q2)

�(q1q2 + q0q3) �(q1q3 � q0q2)
q
2
1 + q

2
3 �(q2q3 + q0q1)

�(q2q3 � q0q1) q
2
1 + q

2
2

3
77775

2
66664
�V c

y =Ry

!ie cos(') + V
c
x =Rx

!ie sin(') + V
c
x tg(')=Rx

3
77775�

� 1

2

2
66666664

�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

3
77777775

2
66664
�
p
x

�
p
y

�
p
z

3
77775 (5.19)

where �p = [�
p
x; �

p
y; �

p
z]
T
is the gyro error vector in the platform frame.

5.3.3 Filter Process Structure in Continuous Time

The error models and the �lter equations are presented in continuous time.

_X(t) = fc(X; t) +Gcu(t) (5.20)

X being the function of the velocity error, the position error and the quaternions, the

process model becomes:2
66664
� _V c

� _Rc

_Qcp

3
77775 =

2
66664
(I3�3 � C(Qcp))fpt � (2
cie +
cec)�V

c

�V c � 
cec�R
c

B(I � C(Qpc))!cic

3
77775+

2
66664
rp

03�1

�B�p

3
77775 (5.21)

where

fc(X; t) =

2
66664
(I3�3 � C(Qcp))fpt � (2
cie +
cec)�V

c

�V c � 
cec�R
c

B(I � C(Qpc))!cic

3
77775 (5.22)
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and

Gcu(t) =

2
66664
rp

03�1

�B�p

3
77775 (5.23)

Rather than model rb and �
b in the body frame as in the psi angle approach, this

method handles the IMU errors directly in the platform frame. rp = [rpx;rpy;rpz]T

and �p = [�
p
x; �

p
y; �

p
z]
T
are the accelerometer and the gyro error vectors in the platform

frame. They are related to the IMU biases in the body frame by:

rp = C(Q
p

b)�rb (5.24)

�
p = C(Q

p
b)� �b (5.25)

where the matrix C(Q
p
b) transforms the vectors from the body frame to the platform

frame. It must be noted that the quaternions Q
p

b
in (5.24) and (5.25) do not contain

the �lter state estimate Qcp.

Let

D
p = �B�p =

2
66666664

D
p
1

D
p
2

D
p
3

D
p
4

3
77777775

(5.26)

and

E = �B � C(Qpb) (5.27)

Then

D
p = �B�p = E � �b (5.28)

The turn-on biases of the accelerometers and the gyros in the body frame are re-

moved in the coarse alignment and during the zero velocity stage when the vehicle

stops. The remains of the bias rb of the accelerometers and the bias �b of the gyros in

the body frame are considered as white Gaussian noise.
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The linear combinations of jointly white Gaussian random variables are also white

Gaussian random variables [49]. Therefore rp, Dp and

2
64 rp
D
p

3
75 are also white Gaussian

noises.

Let us set the noise u(t) as

u(t) =

2
64 rp
D
p

3
75 =

2
666666666666666664

rpx
rpy
rpz
D
p
1

D
p
2

D
p
3

D
p
4

3
777777777777777775

(5.29)

This can be projected into the state space using the transformation matrix Gc:

Gc =

2
6666666666666666666666666664

1 0 0

0 1 0

0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7777777777777777777777777775

(5.30)
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5.3.4 Observation Equations

The observations are the position and the velocity information di�erences of the INS

and the DGPS. Let Z be the measurement vector:

Z =

2
64 bRcINS � bRtGPSbV c

INS � bV t
GPS

3
75 (5.31)

=

2
64 �Rc � �gps

�V c ��gps

3
75

=

2
666666666666664

�Rcx

�Rcy

�Rcz

�V c
x

�V c
y

�V c
z

3
777777777777775

�

2
666666666666664

�x

�y

�z

�x

�y

�z

3
777777777777775

where bRcINS and bV c
INS are the INS computed position and velocity. bRtGPS and bV t

GPS

are the GPS position and velocity outputs respectively. �gps = [�x;�y;�z]
T is the

white noise of the DGPS position measurement and �gps = [�x;�y;�z]
T is the white

noise of the DGPS velocity measurement. The observation matrix H is obtained by

the relationship between the states and the measurement:

Z = H

2
66664
�V c

�Rc

Q
c
p

3
77775�

2
666666666666664

�x

�y

�z

�x

�y

�z

3
777777777777775

(5.32)



5.3 INS Algorithm for Low Cost IMU in Quaternion Approach 122

H is given by:

H =

2
666666666666664

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
777777777777775

(5.33)

5.3.5 The Discrete-Time Filter

The �lter process model in continuous time is:

_X(t) = fc(X; t) +Gcu(t) (5.34)

Z(t) = HX(t) + w(t)

where

fc(X; t) =

2
66664
(I3�3 � C(Qcp))fpt � (2
cie +
cec)�V

c

�V c � 
cec�R
c

B(I � C(Qpc))!cic

3
77775 (5.35)

and

Gcu(t) = Gc �

2
666666666666666664

rpx
rpy
rpz
D
p
1

D
p
2

D
p
3

D
p
4

3
777777777777777775

(5.36)

with the constant matrix Gc.

The �lter accuracy is achieved by using a �rst order Euler integration scheme at

each �lter time. Let dt be the data fusion interval. At time tk+1 and tk, dt = tk+1� tk,
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we have:

_X(tk) t
X(tk+1)�X(tk)

dt
(5.37)

t fc(X(tk); tk) +Gcu(tk)

Therefore the discrete-time process model is:

X(tk+1) = X(tk) + dt� fc(X(tk); tk) +Gcu(tk)dt (5.38)

= fk(X(tk)) +Gkuk

where

fk(Xk) = X(tk) + dt� fc(X(tk); tk) (5.39)

= X(tk) + dt�

2
66664
(I3X3 � C(Qcp))fpt � (2
cie +
cec)�V

c

�V c � 
cec�R
c

B(I � C(Qpc))!cic

3
77775
X(t

k
);t

k

and

Gk = Gcdt (5.40)

uk = u(tk)

The measurement is taken at the GPS sampling time. The discrete observation

equation is:

Z(tk) = HX(tk) + w(tk) (5.41)

with the constant observation matrix H.

For convenience, let Xk = X(tk), Zk = Z(tk) and wk = w(tk). The discrete �lter is

written as

Xk = fk(Xk) +Gkuk (5.42)

Zk = HXk + wk
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5.3.6 Data Fusion - the Distribution Approximation Filter

Introduction

The �lter process models of the quaternion approach are nonlinear.

The EKF predicts the state of the system under the assumption that its process and

observation models are locally linear. The process model and the observation models

are expanded as a Taylor series about the �lter's estimated trajectory using Jacobians.

The cyclic computation of the state prediction, measurement prediction, innovation,

updated state estimation and the state error covariance, state prediction covariance,

innovation, �lter gain and the updated state covariance are similar to those derived

from the procedure using the linear Kalman �lter [83, 71].

There are a number of problems with the EKF. The �rst is the need to analytically

evaluate the Jacobian matrices of the process and observation models. The Jacobian is

not guaranteed to exist (e.g. at discontinuity), or might not have a �nite value. Further,

there can be considerable implementation di�culties when the system is composed of

many states and is highly non-linear. Finally the linearization can introduce signi�cant

errors.

These problems motivated the development of a new �lter algorithm called the

Distribution Approximation Filter (DAF) jointly by Julier and Uhlmann [21, 19]. The

DAF takes a mid-course between the analytical and numerical approaches. Like the

numerical methods, it approximates the state distribution rather than the process or

observation model.

The DAF uses the intuition that it is easier to approximate a distribution than it

is to approximate an arbitrary nonlinear function or transformation. The approach is

illustrated in Figure 5.5.
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* Nonlinear
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Figure 5.5: The principle of the Distribution Approximation Filter

DAF Principle

If the discrete �lter process model and observation model are:

Xk = fk(Xk) + Uk (5.43)

Zk = HXk + wk

it is assumed that the process noise Uk is a Gaussian-distributed, zero mean random

variable with covariance Qk. The process noise at any time is independent of the state

of the system.

E[U ] = 0 (5.44)

E[UiU
T
j ] = Qi�ij

E[UiX
T
j ] = 0 8i; j

where �ij is the Kronecker delta function.

The observation noise wk encompasses all the unmodelled e�ects which act on the

observations, but not on the underlying state of the system itself. It is assumed to be a

zero-mean Gaussian distributed random variable with variance Rk and it is independent
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of the observation noises at all previous time steps:

E[w] = 0 (5.45)

E[wiw
T
j ] = Ri�ij

E[wiX
T
j ] = 0 8i; j

The problem of how to solve can be summarized as follows. We have an n�dimensional
vector random variable X with mean x and covariance Pxx and we would like to predict

the mean y and covariance Pyy of an m�dimensional vector random variable Y where

Y is related to X by the non-linear transformation

Y = g[X] (5.46)

Following the intuition that it is easier to approximate a Gaussian distribution than

it is to approximate an arbitrary nonlinear function or transformation, a parameteriza-

tion could be found which captures the mean and covariance information while at the

same time permitting the direct propagation of the information through an arbitrary set

of nonlinear equations. This can be accomplished by generating a discrete distribution

having the same �rst and second order moments, where each point in the discrete ap-

proximation can be directly transformed. The mean and covariance of the transformed

ensemble can then be computed as the estimate of the nonlinear transformation of the

original distribution.

The DAF operational principle is explained as follows [19]:

Assume an n�dimensional Gaussian distribution having covariance P , a set of 2n

points having the same sample covariance from the columns (or rows) of the matrices

�
p
nP (the positive and negative roots). This set of points is zero mean, but if the

original distribution has mean x , then simply adding x to each of the points yields a

symmetric set of 2n points having the desired mean and covariance. Because the set is

symmetric, its odd central moments are zeros, so its �rst three moments are the same as

the original Gaussian distribution. These points are transformed nonlinearly using the

transition equation. The transformed points can be used to compute the predicted mean
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and covariance. With this approach, there is no need to evaluate Jacobian matrices to

compute the estimation of mean and covariance as in the EKF method.

The DAF is summarized as follows:

� The set of translated � points is computed from the n� n matrix Pk;k as

�k;k  � 2n columns from �
q
(n+ �)Pk;k (5.47)

�ok;k = Xk;k

�ik;k = �ik;k +Xk;k

which assures that

Pk;k =
1

n+ �

2nX
i=1

[�ik;k �Xk;k][�ik;k �Xk;k]
T (5.48)

� The predicted mean is computed as

Xk+1;k =
1

n+ �
[��ok+1;k +

1

2

2nX
i=1

�ik+1;k] (5.49)

� The predicted covariance is computed as

Pk+1;k =
1

n+ �
f�[�ok+1;k �Xk+1;k][�ok+1;k �Xk+1;k]

T + (5.50)

+
1

2

2nX
i=1

[�ik+1;k �Xk+1;k][�ik+1;k �Xk+1;k]
T g+Qk

where Qk is the dynamic noise covariance.

� The predicted observation:

Zk+1;k =
1

n+ �
f�Zok+1;k +

1

2

2nX
i=1

Zik+1;kg (5.51)

The quantity � is a scaling factor which provides an extra degree of freedom to �ne

tune the higher order moments of the approximation.
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5.3.7 Filter Implementation Using DAF

The �lter states are the errors of the INS velocity, position and quaternions. The

discrete �lter is:

Xk = fk(Xk) +Gkuk

Zk = HXk + wk

where fk(Xk), Gkuk and H are as equations (5.39), (5.40) and (5.33).

The initial �lter state starts from X0;0 = [0; 0; 0; 0; 0; 0; q0(1); q1(1); q2(1); q3(1)]
T

with zero INS velocity error, zero INS position error and arbitrary initial quaternion

error [q0(1); q1(1); q2(1); q3(1)]
T . The initial covariance matrix is set by

P0;0 =

2
6666666666666666666666666664

�
2
V x 0 0 0 0 0 0 0 0 0

0 �
2
V y 0 0 0 0 0 0 0 0

0 0 �
2
V z 0 0 0 0 0 0 0

0 0 0 �
2
Rx 0 0 0 0 0 0

0 0 0 0 �
2
Ry 0 0 0 0 0

0 0 0 0 0 �
2
Rz 0 0 0 0

0 0 0 0 0 0 �
2
q0 0 0 0

0 0 0 0 0 0 0 �
2
q1 0 0

0 0 0 0 0 0 0 0 �
2
q2 0

0 0 0 0 0 0 0 0 0 �
2
q3

3
7777777777777777777777777775

(5.52)

The diagonal terms of P0;0 represent variances or mean-squared errors. The o�-

diagonal terms are set to be zeros.
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The initial dynamic process noise is set as Q0.

Q0 =

2
666666666666666664

�
2
acc x 0 0 0 0 0 0

0 �
2
acc y 0 0 0 0 0

0 0 �
2
acc z 0 0 0 0

0 0 0 �
2
q 0 0 0 0

0 0 0 0 �
2
q 1 0 0

0 0 0 0 0 �
2
q 2 0

0 0 0 0 0 0 �
2
q 3

3
777777777777777775

(5.53)

where the tuning of the diagonal terms of Q0 determines the performance of the �lter.

The initial measurement noise R0 is set by

R0 =

2
666666666666664

r
2
rx 0 0 0 0 0

0 r
2
ry 0 0 0 0

0 0 r
2
rz 0 0 0

0 0 0 r
2
vx 0 0

0 0 0 0 r
2
vy 0

0 0 0 0 0 r
2
vz

3
777777777777775

(5.54)

The diagonal terms of R0 are initial measurement noises on INS and GPS position

and velocity.

The �lter is implemented at time tk using the DAF. Following the DAF procedures

(5.47) to (5.51):

� At the data fusion time tk�1, the state estimate isXk�1. The projected covariance

matrix is Pk�1:

� At the current data fusion time tk, compute the � points using the projected

covariance Pk�1.

� =
p
nPk�1 (5.55)

where n is the size of Pk�1.
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� Form the matrix �i

�ik;k = [Xk�1 + �;Xk�1 � �] (5.56)

� Transform each point through the nonlinear state process model as:

�ik;k�1 = fk(�ik;k) (5.57)

� Compute the predicted mean. Then the estimated errors are used to update the

states. After the correction, the predicted mean state Xk;k�1 of the �lter should

be reset to zero:

Xk;k�1 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0]T (5.58)

� The predicted covariance Pk;k�1 is computed as

Pk;k�1 =
1

2n

2nX
i=1

[�ik;k�1 �Xk;k�1][�ik;k�1 �Xk;k�1]
T +Qk (5.59)

where Qk is the dynamic noise covariance.

� Compute the �lter gain Kk :

Kk = Pk;k�1H
T [HPk;k�1H

T +Rk] (5.60)

with Rk being the measurement noise.

� Since the predicted state is zero, the update state estimate Xk is computed as:

Xk = KkZk (5.61)

where Zk is the measurement of this time.

� The update covariance estimate Pk is computed by:

Pk = [I �KkH]Pk;k�1 (5.62)
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Xk is then used to correct the INS velocity, position and quaternions.

The quaternion correction is given by:

Q
p
b = Q

c
p 
Qpb (5.63)

with 
 being the quaternion multiplication.

After this �lter cycle, the INS will continue to generate navigation data at the IMU

sampling rate until the next GPS �x becomes available.

5.4 Summary

In this chapter, the INS algorithm using quaternions for low cost IMUs has been pre-

sented.

INS provides navigation data with high frequency in between GPS updating. At

each INS navigation step, the INS velocity, position, attitude and quaternions are

updated independently. The quaternions are used to represent both the vehicle attitude

and the misalignment of the computer frame and the platform frame. Quaternion

initialization and update using a 2-step Adams-Bashford method are presented in this

approach.

The initial alignment method with unknown initial attitudes is developed using an

in-motion alignment �lter aided by external velocity or position information. In this

approach, the GPS is used as the external information both for alignment and to bound

errors. The INS error propagation models developed in the previous chapter are used

as process models.

The Distribution Approximation Filter is used to solve the nonlinear �lter and its

advantages with respect to the EKF are presented.

Experimental results will be presented in the next chapter.



Chapter 6

Experimental Results

6.1 Introduction

This chapter presents the experimental results for the INS algorithms using the psi

angle approach, the quaternion approach and the GPS modelling.

The results of the GPS modelling in the frequency domain are presented in Section

6.2. Model parameters are shown. PSDs of raw GPS position data and the calculated

PSDs using the model parameters are compared with the experimental data obtained

using a standard GPS receiver. Section 6.2.2 validates the GPS model by a set of plots

in the frequency domain and the time domain using the feed back de-correlation �lter.

Section 6.3 shows the experimental results to verify the psi angle model and the INS

algorithm for a low cost IMU. The experiment uses a low cost IMU aided by a DGPS.

The results will display how the heading errors are corrected from �180� to �0.1�. INS
alignment and calibration results will be presented in this section.

Section 6.4 outlines the experimental results of the quaternion algorithm developed

in this thesis. INS errors in acceleration, velocity, position, attitude and quaternions

will be presented using this approach.

The experimental procedures were designed based on IEEE standards and other

publications [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95].

132
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6.2 GPS Position Modelling Results

This section presents the results of the GPS error modelling. The experimental data

were obtained using a standard GPS receiver (Ashtech Sensor II).

6.2.1 Model Results

The GPS receiver module processes signals from the Global Positioning System satel-

lite constellation to provide real-time position, velocity and time measurement using

twelve dedicated separate and parallel channels for Clear/Acquisition (C=A) code-phase

measurement on the L1 (1575MHz) band. The standard Sensor II is designed for

stand-alone range measurement applications. With four locked satellites, Sensor II

can determine a three-dimensional position with an accuracy of 100 metres rms. All

computations are accomplished relative to the World Geodetic System WGS-84 ref-

erence ellipsoid. The direct outputs of the antenna position data are in the WGS-84

earth-centred earth-�xed reference frame.

In order to calculate the position error characteristics, 50 samples of position data

were collected from a known position. Each sample contains data of approximately 30

minutes duration. The known position in the WGS-84 frame is (�4:66�106, 2:571�106,
�3:503�106) meters. The sampling frequency is 10Hz.

Figure 6.1 shows the raw position output in three-dimension in the WGS-84 earth-

centred earth-�xed reference frame. The position error noise in each axis is calculated

by subtracting the known position from the raw data as in Figure 6.2.

The PSDs of 50 ensembles are averaged to obtain the mean PSD. The true models

are estimated by �tting curves to these mean PSD curves. The mean PSDs in axes x,

y and z are shown in Figure 6.3, 6.4 and 6.5 respectively.
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Figure 6.1: Position output from Ashtech Sensor II.
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Figure 6.2: Position noise in axes x, y and z.
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Figure 6.4: Power spectral density of position error in axis y.
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Figure 6.5: Power spectral density of position error in axis z.

The results of the PSD models for position errors in axes x, y and z are:

axis � � k r

x 0.0018 0.011 0.5 0.0987

y 0.00195 0.015 0.5 0.0523

z 0.00198 0.011 0.5 0.0937

The smooth curves in the Figure 6.6, 6.7 and 6.8 are the estimated PSDs in axes x, y

and z using the estimated models. The measured PSDs are plotted with the estimated

PSDs.

6.2.2 Model Validation

A feedback de-correlation �lter using an INS with a noise variance of 1� 10�6(m=s2)2

is used to validate the GPS model. The GPS measurement is basically the entire noise

when the vehicle is stationary. Using the estimated model parameters, the bode plots

of the transfer function from the GPS measurement to the estimated shaping states in

axes x, y and z are shown in Figure 6.9, 6.10 and 6.11 respectively. The gains are 0dB

for the shaping state estimate before the frequency of 10�2rad= sec :
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Figure 6.6: Measured PSD and estimated PSD in axis x.
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Figure 6.7: Measured PSD and estimated PSD in axis y.
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Figure 6.8: Measured PSD and estimated PSD in axis z.
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Figure 6.9: Bode plot in axis x.
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Figure 6.10: Bode plot in axis y.
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Figure 6.11: Bode plot in axis z.
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Figure 6.12: Time domain performance in axis x using the estimated model.

The �lter performance in the time domain is shown in Figure 6.12, 6.13 and 6.14.

It can clearly be seen that the estimated shaping states track the measured GPS noise.

The parameter values of the shaping �lter are essential for the de-correlation process.

For instance, a change of the parameter �, with � = 0:003; will generate the degraded

performance shown in Figure 6.15 and 6.16. The dashdot curve in Figure 6.15 is the

estimated shaping state. The solid curve is the measured GPS noise. The change of

the poles in the model produces a large error in the shaping state estimate.

Similar changes can be seen by changing other parameters:

Figure 6.17 Figure 6.18

axis x axis z

r = 0:05 b = 0:8; k = 1; r = 0:9
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Figure 6.13: Time domain performance in axis y using the estimated model.
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Figure 6.14: Time domain performance in axis z using the estimated model.
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Figure 6.15: Time domain performance in axis y when the poles of the model change.
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Figure 6.17: Time domain performance in axis x when r is changed.
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Figure 6.18: Time domain performance in axis z when three parameters are changed.
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6.3 Experimental Results of the Psi Angle Approach

This section presents the experiment results to verify the INS algorithm using the psi

angle approach for large attitude errors developed in this thesis. The experimental

platform consists of a low cost IMU (Watson IMU) aided by a DGPS (Novatel RT2

receiver). The experiment was conducted using a UTE in outdoor enviroment.

The IMU used in this experiment is a strapdown inertial measurement unit [96]

which contains three gyros, three accelerometers and two tilt gyros. The IMU is in-

stalled directly in the vehicles. The outputs of the IMU are in the body frame of the

vehicle whose origin is de�ned at the IMU mass centre. The vehicle body frame is

de�ned as the IMU body frame. Three accelerometers are called accelerometers x, y

and z which are installed in the axes x, y and z of the body frame. The three gyros x, y

and z which are installed in the axes x, y and z of the body frame provide the angular

rate of the vehicle with respect to the body frame. The accelerometers measure the

speci�c force in the body frame. The tilt gyros provide the bank and the elevation of

the vehicle. The data sampling frequency is 84Hz. The resolution of the IMU is shown

in the following table:

Angular Rate Gyros Accelerometers

4.3115�10�4(rad= sec) 0:0024m=s2

The resolution and the sensitivity of the angular rate gyros is not enough to measure

the earth rate.

The DGPS provides the position and velocity information in the WGS-84 reference

with an accuracy of 2cm CEP and 2cm= sec CEP respectively. The sampling frequency

of the DGPS is 10Hz.

The vehicle trajectory in the experimentation is shown in Figure 6.19. It starts

from (0; 0) which is the origin of the local level frame. The vehicle moved from (0; 0)

after a stationary period of approximately 12 seconds and returned and stopped at the

starting position.

The outputs of the three accelerometers x, y and z are shown in Figure 6.20. Figure
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Figure 6.19: The vehicle trajectory.

6.21 is the plot of the raw data of the three gyros. They are all in the body frame.

The noise of the DGPS can be modelled as white noise. The shaping �lter is not

added to the algorithm. The �lter state X using the psi angle approach is de�ned by:

X = [�V c
x ;�V

c
y ;�V

c
z ;�R

c
x;�R

c
y;�R

c
z;  x; y; z;

rbx;rby;rbz;�bx; �by; �bz]T (6.1)

where �V c = [V c
x ;�V

c
y ;�V

c
z ]
T is the INS velocity error vector in the computer frame,

�Rc = [�Rcx;�R
c
y;�R

c
z]
T is the INS position error vector in the computer frame,

 = [ x; y; z]
T is the psi angle vector which is the angle between the computer frame

and the platform frame, rb = [rbx;rby;rbz]T is the vector of the accelerometer biases in

the body frame and �b = [�bx; �
b
y; �

b
z] is the vector of the gyro biases in the body frame.

The �lter is initialized with an arbitrary heading between �180�. The system runs

on prediction using IMU data until DGPS information becomes available. At this time

the IMU state is updated and the heading is corrected as shown in Figure 6.22.

Figure 6.23 shows how the heading error diminishes to �1� in approximately 15

seconds. After this stage, the system is switched to the small angle form of the �lter.

The position outputs of the INS and the GPS are shown in Figure 6.24. The INS

continually outputs navigation data between two consecutive GPS sampling times. The

GPS information is used to correct the INS velocity, position and DCM at each GPS
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Figure 6.20: Outputs of three accelerometers. The units for the x axes are seconds.
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6.3 Experimental Results of the Psi Angle Approach 147

−16 −14 −12 −10 −8 −6 −4 −2 0

1

1.5

2

2.5

3

3.5

4

   East   (m)

No
rth

   
(m

)

position

GPS

INS

INS

start

GPS

GPS

INS

Figure 6.22: INS starts with a wrong heading. The �lter corrects the heading in the

�rst 20 seconds.

0 2 4 6 8 10 12 14 16
−100

−50

0

50

100
heading error

de
gr

ee

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10
covariance of heading error

time   :      sec

Figure 6.23: Heading error diminishes to small angles in 15 seconds.



6.3 Experimental Results of the Psi Angle Approach 148

−95 −90 −85 −80
170

172

174

176

178

180

182

184

186

188

190

   East   (m)

N
or

th
   

(m
)

position

INS

INS

GPS

GPS

Figure 6.24: Position outputs of the INS and the GPS after attitude correction. The

INS continually outputs navigation data between two consecutive GPS sampling times.

sampling time.

Tilt and heading errors are within �0:05� as shown in Figure 6.25.

At the end of the run, the vehicle returned to the starting position and stayed

stationary for a few seconds. The acceleration and velocity predicted by the INS should

be zero during this period. The acceleration outputs in the p-frame are shown in Figure

6.26. It can be seen that the accelerations are very close to zero implying that the

alignment procedure is able to correct the transformation matrix or direction cosine

matrix (DCM).

Without DCM correction, only position and velocity errors are corrected. In this

case, the acceleration is not zero at the end of the run as shown in Figure 6.27.

The drift of one of the gyros used in the IMU is shown in Figure 6.28. It can be

appreciated that the random walk is about 0.1 degree=min. To degrade the accuracy

of the unit, an additional random noise plus drift was added to the IMU sensors. The

noise added to the three accelerometers and the three gyros was approximately 3 times
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Figure 6.25: Tilt and heading errors diminish to small angles.
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Figure 6.28: Random walk of the gyro x in 3 minutes.
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Figure 6.29: The noise added to the three accelerometers and the three gyros was

approximately 3 times larger than the standard noise of the Watson IMU. The unit of

the acceleration noise is m=s2.

larger than the standard noise of the Watson IMU. The drift rate of the perturbed gyro

noise is shown in Figure 6.29 and is now about 0.3 degree=min.

The alignment results can be seen in Figure 6.30 and Figure 6.31.

At the end of the run, the rotation rate and the acceleration should be close to

zero. In Figure 6.30, the rotation rate without �lter calibration in 3 gyros is about

0.3 degree=sec while it is approximately zero with the alignment algorithm. Similar

results are obtained with acceleration as shown in Figure 6.31. The acceleration in the

platform frame at the end is close to zero with the calibration of the �lter when the

acceleration is perturbed.

These results prove that the biases in gyros and accelerometers are properly esti-

mated.
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Figure 6.30: The INS rotation rate at the end of the run when the vehicle is stationary

should be zero. The solid curve is the rotation rate after calibration by the �lter. It is

close to zero. The 'plus +' curve is the rotation rate without calibration.
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Figure 6.31: With perturbed acceleration, at the end of the run, the acceleration in the

platform frame is close to zero after calibration by the �lter.
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6.4 Experimental Results of the Quaternion Algorithm

The quaternion algorithm developed in this thesis is demonstrated using the experi-

mental results in this section. The experimental data used in the previous section and

shown in Figure 6.19, 6.20 and 6.21 were used to test the algorithm.

The �lter state X is given by:

X = [�V c
x ;�V

c
y ;�V

c
z ;�R

c
x;�R

c
y;�R

c
z; q0; q1; q2; q3]

T (6.2)

where

[�V c
x ;�V

c
y ;�V

c
z ]
T is the INS velocity error vector in the computer frame.

[�Rcx;�R
c
y;�R

c
z]
T is the INS position error vector in the computer frame.

[q0; q1; q2; q3]
T is the quaternion representing the error between the computer frame

and the platform frame.

The Distribution Approximation Filter starts with arbitrary initial quaternions.

The vehicle trajectory starts from (0; 0) of the local level frame which is at the right

bottom corner of the Figure 6.32. The INS outputs wrong navigation information at the

beginning of the run due to incorrect alignment. The position and heading correction

can be appreciated in this �gure after 60 �lter iterations, which is about 20 seconds. The

heading error is corrected to less than �2�. Figure 6.33 shows this heading correction.

The quaternion errors are shown in Figure 6.34. After 60 �lter iterations which is

approximately 20 seconds, the quaternion errors become very close to [1; 0; 0; 0]T ; which

represents a zero rotation between the computer frame and the platform frame. Figure

6.35 is an enhanced view of the four elements of the quaternion errors at around 40

seconds of the vehicle running time.

The accelerations in the three axes of the platform frame are shown in Figure 6.36.

At the end of the run, the true acceleration in the platform should be zero. Figure

6.37 is the enhanced view of the calculated acceleration in the platform frame. The
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Figure 6.32: At the beginning, the INS is uncertain within �180�. After 60 iterations

of the �lter, the INS heading error is corrected to less than �5�.
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Figure 6.33: The INS heading error is diminished to small angles after 60 iterations of

the �lter.
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Figure 6.34: Quaternions are corrected after each �lter time.
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Figure 6.35: The enhanced view of the quaternion errors between the �lter iteration

100 to 160 which correspond to the vehicle running time 25 seconds to 45 seconds.

The four elements are very close to [1; 0; 0; 0]T which represents quaternions of a zero

rotation from the computer frame to the platform frame.
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Figure 6.36: Accelerations in the three axes of the platform frame. The unit of the plot

is m=s2:

acceleration in axis x and axis z are very close to zero. The error in axis y is about

0.08 m=s2:

The attitude errors in the three axes are shown in Figure 6.38. The tilt errors are

less than �0:04�. The heading errors are within �0.5�.
The velocity and position errors at the end of the run can be seen in Figure 6.39.

The velocity errors are within 0.5m=s2: The position errors are within 0.2m.

Figure 6.40 shows the position curves of the INS and GPS outputs after 170 seconds

of the run. In this run the sampling frequency of the GPS is about 5Hz. The INS

position prediction matches the GPS position plot which is the label \o" in the plot.

Figure 6.41 is an enhanced view of this position match. The INS position output is

as the solid curve. The GPS position output is as the curve \o".
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Figure 6.37: At the end of the run, the vehicle is stationary. The accelerations in the

three axes of the platform frame are very close to zero.
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Figure 6.38: Tilt errors are less than �0.04�. Heading errors are within �0.5�.
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6.5 Summary

The GPS modelling results have veri�ed the modelling theory and techniques in the

frequency domain developed in this thesis.

The experimental results in this chapter have veri�ed the psi angle and the quater-

nion models for low cost INS developed in this thesis.

These results have shown that for a low cost INS with aiding GPS information,

position, velocity and attitude accuracy can be achieved using the INS algorithms in

the psi angle approach and the quaternion approach presented in this thesis.



Chapter 7

Summary and Conclusions

7.1 Introduction

This chapter summarizes the major contributions of this thesis, draws conclusions and

makes suggestions for future research.

In Section 7.2, a chapter by chapter summary of this thesis is presented. Section

7.3 highlights the major contributions of this thesis. Finally, Section 7.4 reviews some

of the limitations of the work and future research in this area is suggested.

7.2 Summary of Each Chapter

Chapter 1 provided the primary motivation for the work carried out in this thesis. It

is argued that INS errors determine the behaviour and the accuracy of an INS. The

error model is the tool for error analysis. Advanced INS algorithms are based on error

modelling. For a low cost INS with less accurate resolution, INS errors are large. INS

error models for large attitude errors are needed.

A short survey of INS error models was given in this chapter. The psi angle approach

or the computer frame approach and the phi angle approach or the true frame approach

are two modelling approaches which were investigated.

This chapter introduced the main research theme of this thesis - the development of

160
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INS error models for large attitude errors in the computer frame approach with both psi

angle form and quaternion form, and the development of two integrated INS algorithms

for a low cost INS. These two algorithms were aided by the GPS. GPS modelling in

the frequency domain was also discussed extensively.

In Chapter 2, the generic INS error propagation models for large attitude errors

in the psi angle approach and the quaternion approach were presented.

A short survey of INS error models was given in Section 2.2. This survey showed

that two approaches have been adopted in the literature: the psi angle approach (or the

computer frame approach) and the phi angle approach (or the true frame approach).

So far, there are no generic error propagation models for three large attitude errors.

All the quaternion error models in the literature are based on small angle assumption.

Section 2.3 developed INS error propagation models for large errors in the psi angle

approach. There are three models: the velocity error model, the position error model

and the attitude model. The attitude errors were presented using three psi angles. In

this case, the three attitude errors can be assumed to be large with uncertainties of

�180�:
It was argued that INS attitude updating using quaternions provides more accuracy,

requires less computation and avoids singularity in computation. This motivated the

development of another set of INS models in quaternion form for large errors in Section

2.4. The computer frame approach was also used in this model. Quaternion errors

were presented using the quaternions between the platform frame and the computer

frame. Di�ering from other quaternion models, these models make no assumption of

small angle errors.

Chapter 3 presented the identi�cation of GPS error models using frequency domain

techniques.

It is argued that the navigation problem can be generally split into two components:

creating a process model of the host vehicle and understanding or modelling the sensors

to be used. The process model of a navigation system describes the prediction of states

which are typically the position, velocity, attitude and related parameters a�ecting



7.2 Summary of Each Chapter 162

these variables. This chapter detailed the modelling of the GPS measurement which is

used to aid INS navigation.

Section 3.2 reviewed previous work on GPS modelling in the frequency domain. This

review showed that a GPS position error model has not been theoretically developed

in the frequency domain. Section 3.3 derived a GPS position error model. It is proved

that the transfer function of the GPS position error in any frame has the identical poles

and zero as the pseudo-range error. A modelling method using power spectral density

of the noise was presented in Section 3.4. Section 3.5 examined the de-correlation of

the GPS coloured noise. A shaping �lter was introduced to the de-correlation �lter. An

additional sensor is required for de-correlation. Feedforward �lter and feedback �lter

with the INS and GPS measurements were analyzed in both the frequency domain and

the time domain to determine the quality of aiding sensors to perform de-correlation.

Chapter 4 designed a low cost INS algorithm with unknown initial conditions using

the psi angle approach in the computer frame.

The INS alignment algorithms were reviewed in Section 4.2. This review showed

that the analytic coarse alignment method and gyrocompassing are the major methods

for self-alignment. They require the measurements of the gravity vector and the earth

rate by three accelerometers and three gyros. In-motion alignment is also used for

INS �ne alignment and was reviewed. It is shown that most of the applications in the

literature for in-motion alignment were based on �lters with known initial attitudes. For

a low cost IMU with low resolution, the initial attitude errors are large. The algorithms

to solve this problem were reviewed.

In this chapter, a new algorithm was developed in the computer frame approach

that can be used with unknown initial attitudes.

Section 4.3 described the on ground coarse alignment for low cost IMUs. This

algorithm also takes into account the turn-on biases estimation. The coarse initial

direction cosine matrix was formulated.

The solution of unknown initial attitudes was presented in Section 4.4 using an

in-motion alignment algorithm. A �lter with error propagation models for large error
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angles in the computer frame was developed. The �lter was implemented using the

Extended Kalman Filter (EKF).

Chapter 5 dealt with the issue of developing an INS algorithm for a low cost IMU

using quaternions in the computer frame.

Section 5.2 described independent INS navigation using quaternions. Quaternion

initialization was formulated. A 2-step Adams-Bashford method was introduced for

quaternion update.

The quaternion algorithm to deal with unknown initial attitudes was developed

in Section 5.3. The quaternion errors were exploited using the misalignment of the

computer frame and the platform frame. The entire �lter process model structure

and the process noise were presented. The process noise vectors were reconstructed

using the linear combination of the white noise on the accelerometers and gyros in the

body frame. A Distribution Approximation Filter (DAF) was used to implement this

algorithm. The principle and the bene�t of the DAF were brie
y described.

Chapter 6 presented the experimental results for the INS algorithms using the psi

angle approach, the quaternion algorithm and the GPS modelling.

The results of GPS modelling in the frequency domain were presented in Section

6.2. The GPS model was validated using a set of plots in the frequency domain and

the time domain using a feedback de-correlation �lter.

Section 6.3 presented the experimental results to verify the psi angle models and

the INS algorithm for low cost IMUs using these models. The experiment used a low

cost IMU aided by a DGPS. The results demonstrated how the heading errors were

corrected. INS alignment and calibration results were also presented in this section.

Section 6.4 outlined the experimental results of the quaternion algorithm. INS

errors in acceleration, velocity, position, attitude and quaternions were examined.

These results have shown that for a low cost INS with aiding GPS information,

position, velocity and attitude accuracy can be achieved using the INS algorithms

presented in this thesis.
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7.3 Contributions

The major contributions of this thesis are the development of the error models and

the applications of the models to integrated INS algorithms. This section outlines the

individual contributions of this thesis.

7.3.1 INS Error Modelling in Psi Angle Approach

This thesis presents two new INS error propagation models for large angle errors.

Two approaches to generate INS models are investigated in the literature: the psi

angle approach or the computer frame approach and the phi angle approach or the true

frame approach. The two approaches yield identical results. Most of the models in the

literature have assumed that either the three attitude errors are small or the two tilt

errors are small and one heading error is large.

The psi angle approach was used in this thesis for the development of the INS

models. There are three equations in this psi angle model for large attitude errors: the

velocity error propagation equation, the position error propagation equation and the

psi angle equation. This model di�ers from other models in that it does not rely on

the small angle assumption and can accommodate three large attitude errors. Three

independent states were used to describe the three psi angles in the computer frame.

The model with three small attitude errors becomes a special form of this model. The

model for one large heading error and two small tilt errors is also a special case of the

model.

7.3.2 INS Error Modelling Using the Quaternion Approach

Another important contribution of this thesis is the INS model in quaternion form. The

model equations are also in the computer frame. There are three sets of equations: the

velocity error propagation equation using quaternions, the position error propagation

equation and the quaternion error propagation equation. The model di�ers from other

quaternion models in the literature in that it makes no assumption of small attitude
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errors. The model is suitable for both small and large angles.

7.3.3 GPS Modelling in Frequency Domain

GPS modelling in the frequency domain is another contribution of this thesis. Unlike

other GPS modelling in previous work that modelled the errors of the pseudo range

and the clock o�set, this approach models the GPS position error reported by standard

GPS. The equations of GPS correlated errors in position were derived as second order

systems in the frequency domain. Power spectral density (PSD) plots were used as the

tool to obtain the model parameters.

This thesis also presented a feedback �lter and a feedforward �lter for GPS error

de-correlation using INS information. The essential requirement for the variance of the

INS noise for de-correlation was presented using frequency domain techniques.

7.3.4 INS Algorithm for Low Cost IMU Using Psi Angle Approach

An important contribution of this thesis is the INS algorithm using the psi angle ap-

proach. This algorithm was designed for a low cost INS whose resolution is low to

perform INS self-alignment. The main contribution is the in-motion alignment to solve

the initial attitude uncertainty.

The algorithm includes raw data process, coarse leveling, in-motion alignment and

calibration. A GPS shaping �lter is introduced in the �lter model. When a high

accuracy DGPS was used, the error of the DGPS was modelled as white noise. The

�lter procedure using the EKF was formulated. After the attitude errors diminish to

small angles, the �lter still works using the psi angle model in its small angle form

which is a special case of the psi angle model. The biases of the accelerometers and

gyros were modelled and calibrated in-motion. This algorithm combines INS alignment,

calibration and navigation under one �lter.
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7.3.5 INS Algorithm for Low Cost IMU Using Quaternion Model

Another contribution of this thesis is the INS algorithm using the quaternion model

for low cost inertial systems with low resolution which are not able to conduct self-

alignment.

It is argued that computing the INS attitude using quaternions has more advantages

than using Euler angles and the direction cosine matrix. The INS alignment and cali-

bration were implemented in-motion using a nonlinear �lter whose process models were

the INS error propagation models using quaternions. To avoid deriving the Jacobian

matrices of the �lter, the Distribution Approximation Filter was used in this algorithm.

7.4 Future Work

7.4.1 DGPS Modelling

This thesis developed GPS modelling in the frequency domain. A shaping �lter was

described. This GPS model is useful for a stand alone GPS with a position error of 20-

100m. In the experimental implementation of the INS algorithms in this thesis, a high

accuracy DGPS was used instead of a stand alone GPS. The accuracy of this DGPS

was 2cm. The error of this DGPS was modelled as white noise. Future work could

model the DGPS in the frequency domain to achieve higher accuracy of the navigation

system.

In this thesis, a \loose-coupling" mode is used to fuse the INS and GPS. In this

mode the INS and the GPS are treated as navigation systems. The calculated GPS

position and velocity are used. When a \tight-coupling" mode is used, the INS and GPS

receiver are treated as individual sensors. The raw data of the GPS pseudo range and

carrier phase are used directly. Further modelling of these raw data in the frequency

domain could be another interesting area.
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7.4.2 Experimental Implementation of the INS Algorithms with Three

Unknown Attitudes

The INS algorithms developed in this work are theoretically designed for all unknown

attitudes. In the real time experimental implementation, two tilt gyros were available

in the IMU to reduce initial tilt errors to small angles. Only one heading error was

large in the experiment.

Further experimental work could be extended without using tilt gyros.

7.4.3 Self Tuning Filters

In the experimental implementation for these INS algorithms, the performance of the

�lters was in
uenced by the choice of the process noise attributes. Currently, the noise

strengths were chosen by engineering judgement and experience. An important area

for future work could be to develop methods which are able to identify the strengths

of the process noise from the collected raw data. Consequently these future self-tuning

�lters could lead to consistent and accurate performance in real time implementation.

7.4.4 Phi Angle Model for Large Attitude Errors

The psi angle approach and the phi angle approach are adopted in the literature. The

psi angle approach in the computer frame was used to develop the INS models and the

integrated algorithms for low cost INS in this thesis.

A phi angle model in the true frame for large attitude errors could be an interesting

research area for future work. The quaternion models for large attitude errors in the

phi angle approach could also be studied in the future.
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