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Outline 

• Inertial Navigation System (INS) 

• INS/GPS Integration 

• Pointing Control System 
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Navigation System 

• Navigation: estimate the position, velocity, and orientation of a platform 

• Inertial Navigation: use inertial sensors for navigation 

– Based on inertial principles (acceleration and angular velocity) 

– Measurements are always in the inertial frame 

• Most common inertial sensors 

– Accelerometers 

– Gyros 

• Applications 

– Manned and unmanned aircrafts, spacecrafts, ships, submarines, and land vehicles 

– Short-term motion compensation: EO/IR (stable attitude), SAR (precise velocity) 

– Precise pointing: laser designator/director, ground-based RADAR, telescope 

– Relative positioning: aerial refueling, aircraft carrier landing 
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Common Sensor Error Terms 

• Use weight scale as an example to explain common sensor error terms 

– Weight = Spring Constant * Distance Deflection 

– Ex:   100 lb = 100 * 1 cm                  200 lb = 100 * 2 cm 

• Bias Error – An added constant, independent of input 

– Weight = Spring Constant * Distance Deflection + Bias 

– Ex:   102 lb = 100 * 1 cm + 2            202 lb = 100 * 2 cm + 2 

• Scale Factor Error – proportional to input 

– Sprint constant is the scale factor in our example 

– Ex:   103 lb = 101 * 1 cm + 2            204 lb = 101 * 2 cm + 2 

• Noise – fast changing random effect 

– Zero-mean random variable, certain probability distribution 

– Random Walk: phenomena when integrating noise over time 
 

• Linearity Error – input-output nonlinearity 

– Ideally, input-output plot is a straight line 
 

• Misalignment – Difference between actual sensing axis and perceived sensing axis 
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Accelerometers 

• Measure specific force 

– Specific force = acceleration - gravity 

• Error sources: bias, scale factor, misalignment, linearity, random walk 

• Bias is typically the dominant error source 

– Navigation grade accelerometers have accuracy of 50 micro-g 

– Simple 1-D model with a constant unknown bias term (No other aiding) 

 

• Velocity can be obtained by integrating the acceleration 

 

• Position can be obtain by integrating the velocity 
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Accelerometer Technology Application 
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Figure: Schmidt (2011) 



• Measure angular velocity 

 

 

 

 

• Error sources: bias, scale factor, misalignment, linearity, random walk 

• Bias is typically the dominant error source 

– Navigation grade gyros have accuracy of 0.01 °/hr 

– Simple 1-D model with a constant unknown bias term (No other aiding) 

 

• Attitude (Orientation) can be obtained by integrating the angular velocity 

Gryos 
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Gyro Technology Application 
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Inertial Measurement Unit (IMU) 

• Typically an IMU has 3 accelerometers and 3 gyros (x, y, z) 

 

• Strapdown IMU 
– All inertial sensors are rigidly attached to the platform (no mechanical movement) 

– Almost all IMUs on the market today are strapdown systems 

– Example:  

Honeywell HG1700 AG58 (Tactical Grade) 

• Gyros accuracy: 1 deg/hr 

• Accelerometers accuracy: 1 mg 

 

• Gimballed IMU 
– Gyros and accelerometers are isolated from movement by means of gimbals 

– Big, heavy, and very expensive to make and maintain 

– Only used when the highest possible accuracy is required 

– Example:  

     

 SPIRE System 
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IMU Performance and Application 
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Inertial Navigation System (INS) 

• An INS consists of a IMU and a system processor 

• The system processor computes the solution (position, velocity, attitude) 

– Due to errors in gyros and accelerometers, the solution has unbounded drift error 

• Strap-down INS integration equations 
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INS Aidings 

• Inertial sensors can accurately capture high-frequency dynamics 

• To limit drift error in the integrated solution, an INS requires aiding 
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Aiding System Measurement 

GPS Pseudo range, delta pseudo range 

Star tracker Attitude orientation 

Receive signal strength Attitude orientation 

Image Correlation (EO/IR) Attitude orientation 

Multi-antenna GPS Attitude orientation 

Barometer Altitude 

Magnetometer / Compass Heading 

Doppler radar velocity 

Underwater pressure sensor Depth 

Underwater transponder Range from known position 



Outline 

• Inertial Navigation System (INS) 

• INS/GPS Integration 

• Pointing Control System 
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One Dimensional Example (Part 1) 
-- A car with one accelerometer driving on a perfectly straight road 

-- GPS aiding, naïve open loop design 
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One Dimensional Example (Part 2) 
-- A car with one accelerometer driving on a perfectly straight road 

-- GPS aiding, naïve open loop design using two 1st order filters 
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Approach of INS/GPS Integration 

• Navigation solution is computed via: 

– Attitude determination by 3-axis attitude propagation using 

• Body to Inertial frame rate / delta angles measured by Gyros 

• Inertial to Navigation frame delta angles derived from  

– Velocity of the vehicle 

– Earth rotation rate 

– Velocity and Position Determination 

• Position is integration of velocity 

• Velocity is integration of acceleration / delta velocity measured by Accelerometers 

 

• Navigation solution is corrected by the Kalman Filter integrated with the 
GPS receiver (aiding), resulting in a “tightly coupled”  GPS/INS 
implementation, which computes: 

– Attitude, Position, and Velocity corrections 

– Gyro Bias, Scale Factor, and Misalignment estimates 

– Accelerometer Bias, Scale Factor, and Misalignment estimates 

– GPS receiver clock Bias and Drift estimates 
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Tightly-Coupled INS/GPS Architecture 
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INS/GPS Kalman Filter: States 
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INS/GPS System Initialization 
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• Initialization: estimate the initial values 

– The nonlinear navigation integration equation needs some initial values 

– The Kalman filter requires good initial values for solution convergence 

• Position, velocity, and GPS receiver clock bias are initialized using GPS 

• Attitude initialization 

 

 

 

 

 

 

 

• All other parameters (bias, scale factor, etc) can be initialized to 0 

Method Value Limitation 

Accelerometer Roll, Pitch Stationary or steady motion 

Gyro compassing Heading Stationary and high-quality gyros 

Magnetometer / 
Compass 

Heading Magnetic interference 

Star tracker Roll, Pitch, Yaw Visibility to stars 

Multi-antenna GPS Roll, Pitch, Yaw 
Baseline distance and convergence 
time 



Outline 

• Inertial Navigation System (INS) 

• INS/GPS Integration 

• Pointing Control System 
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Feedback Control 

• Example 

– Consumer: temperature control (oven, A/C), cruise control, hard disk arm control 

– Defense: missile guidance, flight control, attitude control, pointing control 

 

• Why do we need feedback? 

– To deal with Uncertainty 

• Approximate model of the system dynamics 

• Unknown disturbance and noise 
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Control Methods 

• Classic Control 

– Deal with single-input single-output (SISO) system 

– Based on transfer function (zeros/poles) or impulse response model 

– PID control, Lead-Lag compensator 

• PID is by far the most widely known and used control technique in practice 

– For many multi-input multi-output (MIMO) systems in practice, can decouple to 
multiple SISO systems 

• Moderm Control 

– Based on state-space model that naturally includes MIMO case 

– Linear Quadratic Regulator (LQR) 

– LQG, H∞ and robust control 

• Nonlinear Control 

– Bang-Bang Control (on/off) 

– Lyapunov function, Pontryagin's minimum principle 

• Others 

– Adaptive Control, Model Predictive Control 

– Distributed Control, Cooperative Control, Hybrid Control 

– … 
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Gimbals Pointing Control 
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Laser Pointing 

• Laser pointing requires very accurate pointing (< 0.005°) 

– Laser has a much narrower beam width than RF 

– Ex: Inter-satellite communication, directed energy weapon 

 

• Coarse Pointing - Gimbals 

– Use conventional electrical motors 

– Sufficient for acquisition and tracking 

– Control bandwidth: 5 – 50 Hz 

 

• Fine Pointing - Mirrors 

– Use piezoelectric or ultrasonic motor 

– Use 4-quadrants detector to provide feedback 

– Very high resolution (arc-sec) 

– Can achieve control bandwidth > 1000 Hz 
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• Mechanical misalignment 

– Design online / offline calibration methods 
to estimate the misalignment and lever 
arm between the navigation system and 
payload pointing system 

– Ex 1: Use received signal strength in 
communication pointing 

– Ex 2: Use image correlation in camera 
(EO/IR) pointing 

– Ex 3: Install low quality IMU on the 
payload pointing system (Transfer Align, 
Velocity Matching) 

 

• Better model of unknown disturbance 

– Ex 1: Periodic vibration  

– Ex 2: Reaction wheel in spacecraft 

– Ex 2: Time-correlated (Non-white) 

 

• Compensate delay by extrapolation 

– Accurate data time tag 

– Linear or quadratic extrapolation 
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Conclusion 
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Thank you for your interest 

• This brief presentation covers some basic principles in the inertial 
navigation system and the pointing control system. 
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